The development of novel scaffolds will be an important aspect in future success of tissue engineering. Scaffolds will preferably contain information that directs the cellular content of constructs so that the new tissue that is formed is closely aligned in structure, composition and function to the target natural tissue. One way of approaching this will be the development of novel protein-based constructs that contain one or more repeats of functional elements derived from various proteins. In the present case, we describe a strategy to make synthetic, recombinant triple-helical constructs that contain repeat segments of biologically relevant domains. Copies of a DNA fragment prepared by PCR from human type III collagen have been inserted in a co-linear contiguous fashion into the yeast expression vector YEpFlag-1, using sequential addition between selected restriction sites. Constructs containing 1, 2 and 3 repeats were designed to maintain the (Gly-X-Y) repeat, which is essential for the formation of an extended triple helix. All constructs gave expressed protein, with the best being the 3-repeat construct which was readily secreted. This material had the expected composition and N-terminal sequence. Incubation of the product at low temperature led to triple-helix formation, shown by reaction with a conformation dependent monoclonal antibody.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-6041/25/1/015006 | DOI Listing |
Clin Trials
January 2025
Rare Diseases Team, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, H-6725 Szeged, Hungary.
Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.
Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Sports Arts, Hebei Sport University, Shijiazhuang, Hebei, China.
A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!