Aberrant NF-kappaB activity promotes tumorigenesis. However, NF-kappaB also inhibits tumor growth where tumor suppressor pathways remain unaltered. Thus, its role in tumorigenesis depends upon the function of other cellular factors. Tumor suppressor SMAR1 down-modulated in high grade breast cancers is regulated by p53 and is reported to interact and stabilize p53. Because both SMAR1 and NF-kappaB are involved in tumorigenesis, we investigated the effect of SMAR1 upon NF-kappaB activity. We show that SMAR1 induction by doxorubicin or overexpression produces functional NF-kappaB complexes that are competent for binding to NF-kappaB consensus sequence. However, SMAR1 induced p65-p50 complex is phosphorylation- and transactivation-deficient. Induction of functional NF-kappaB complexes stems from down-regulation of IkappaBalpha transcription through direct binding of SMAR1 to the matrix attachment region site present in IkappaBalpha promoter and recruitment of corepressor complex. Real time PCR array for NF-kappaB target genes revealed that SMAR1 down-regulates a subset of NF-kappaB target genes that are involved in tumorigenesis. We also show that SMAR1 inhibits tumor necrosis factor alpha-induced induction of NF-kappaB suggesting that activation of NF-kappaB by SMAR1 is independent and different from classical pathway. Thus, for the first time we report that a tumor suppressor protein SMAR1 can modulate NF-kappaB transactivation and inhibit tumorigenesis by regulating NF-kappaB target genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M801088200 | DOI Listing |
Gynecol Oncol
January 2025
Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.
Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.
Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).
Cancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Kaohsiung J Med Sci
January 2025
Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA.
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy.
The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.
View Article and Find Full Text PDFThousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!