Leaf cold acclimation and freezing injury in C3 and C4 grasses of the Mongolian Plateau.

J Exp Bot

State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Published: December 2008

The scarcity of C4 plants in cool climates is usually attributed to their lower photosynthetic efficiency than C3 species at low temperatures. However, a lower freezing resistance may also decrease the competitive advantage of C4 plants by reducing canopy duration, especially in continental steppe grasslands, where a short, hot growing season is bracketed by frost events. This paper reports an experimental test of the hypothesis that cold acclimation is negligible in C4 grasses, leading to greater frost damage than in C3 species. The experiments exposed six C3 and three C4 Mongolian steppe grasses to 20 d chilling or control pre-treatments, followed by a high-light freezing event. Leaf resistance to freezing injury was independent of photosynthetic type. Three C3 species showed constitutive freezing resistance characterized by <20% leaf mortality, associated with high photosynthetic carbon fixation and electron transport rates and low leaf osmotic potential. One freezing-sensitive C4 species showed the expected pattern of chilling-induced damage to photosynthesis and >95% leaf mortality after the freezing event. However, three C3 and two C4 species displayed a cold acclimation response, showing significant decreases in osmotic potential and photosynthesis after exposure to chilling, and a 30-72% reduction of leaf freezing injury. This result suggested that down-regulation of osmotic potential may be involved in the cold acclimation process, and demonstrated that there is no inherent barrier to the development of cold acclimation in C4 species from this ecosystem. Cold acclimation via osmoregulation represents a previously undescribed mechanism to explain the persistence of C4 plants in cool climates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639018PMC
http://dx.doi.org/10.1093/jxb/ern257DOI Listing

Publication Analysis

Top Keywords

cold acclimation
24
freezing injury
12
plants cool
8
cool climates
8
freezing resistance
8
freezing event
8
three species
8
osmotic potential
8
freezing
7
acclimation
6

Similar Publications

This study examined the energy-dependent physiological responses, including stress, innate immune, and antioxidant systems, as well as indicators of energy mobilization, in pacu (Piaractus mesopotamicus) exposed to intermittent cold, aiming to assess the correlations between these responses. The fish were acclimated to 28 °C, divided into two groups, a control group maintained at 28 °C, and another exposed to 16 °C for two 24 h periods with a 5-day interval between them. The fish were sampled at six time points: baseline (after acclimatization to 28 °C), 24 h after the 1st exposure to 16 °C, after 5 days of recovery at 28 °C, 24 h after the 2nd exposure to 16 °C, and after 24 and 48 h of recovery at 28 °C.

View Article and Find Full Text PDF

The cold tolerance of the terrestrial slug, Ambigolimax valentianus.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

January 2025

Department of Zoology, University of British Columbia, Vancouver, BC, Canada.

Terrestrial molluscs living in temperate and polar environments must contend with cold winter temperatures. However, the physiological mechanisms underlying the survival of terrestrial molluscs in cold environments and the strategies employed by them are poorly understood. Here we investigated the cold tolerance of Ambigolimax valentianus, an invasive, terrestrial slug that has established populations in Japan, Canada, and Europe.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF
Article Synopsis
  • Pugionium cornutum demonstrates strong tolerance to drought, salt, and disease, but the ways it copes with these stresses are not well understood.
  • In this study, researchers identified the PcNAC25 transcription factor gene, which is linked to stress response and enhances drought and salt tolerance when overexpressed in Arabidopsis.
  • The findings suggest that PcNAC25 acts as a positive regulator by boosting ROS-scavenging enzyme activity and promoting root growth, paving the way for more research on its regulatory mechanisms against environmental stresses.
View Article and Find Full Text PDF

In some peanut (Arachis hypogaea L.) producing regions, growth and photosynthesis-limiting low and high temperature extremes are common. Heat acclimation potential of photosynthesis and respiration is a coping mechanism that is species-dependent and should be further explored for peanut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!