This paper presents a machine-learning approach to the interactive classification of suspected liver metastases in fMRI images. The method uses fMRI-based statistical modeling to characterize colorectal hepatic metastases and follow their early hemodynamical changes. Changes in hepatic hemodynamics are evaluated from T2*-W fMRI images acquired during the breathing of air, air-CO2, and carbogen. A classification model is build to differentiate between tumors and healthy liver tissues. To validate our method, a model was built from 29 mice datasets, and used to classify suspicious regions in 16 new datasets of healthy subjects or subjects with metastases in earlier growth phases. Our experimental results on mice yielded an accuracy of 78% with high precision (88%). This suggests that the method can provide a useful aid for early detection of liver metastases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-540-85988-8_12DOI Listing

Publication Analysis

Top Keywords

liver metastases
12
fmri images
12
classification suspected
8
suspected liver
8
metastases fmri
8
metastases
5
liver
4
images machine
4
machine learning
4
learning approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!