We report the generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by phase-matched optical rectification in lithium niobate using 28 mJ femtosecond laser pulses. The phase-matching condition is achieved by tilting the laser pulse intensity front. Temporal, spectral, and propagation properties of the generated terahertz pulses are presented. In addition, we discuss possibilities for further increasing the energy of single-cycle terahertz pulses obtained by optical rectification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.33.002497 | DOI Listing |
Nature
December 2024
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2024
University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.
Nanophotonics
April 2024
TUM School of Computation, Information and Technology, Technical University of Munich (TUM), D-85748 Garching, Germany.
In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.
View Article and Find Full Text PDFNanophotonics
April 2024
Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venezia Mestre, Italy.
We describe the design of two types of metamaterials aimed at enhancing terahertz field pulses that can be used to control the magnetic state in condensed matter systems. The first structure is a so-called "dragonfly" antenna, able to realize a five-fold enhancement of the impinging terahertz magnetic field, while preserving its broadband features. For currently available state-of-the-art table top sources, this leads to peak magnetic fields exceeding 1 T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!