We report the generation of 30 microJ single-cycle terahertz pulses at 100 Hz repetition rate by phase-matched optical rectification in lithium niobate using 28 mJ femtosecond laser pulses. The phase-matching condition is achieved by tilting the laser pulse intensity front. Temporal, spectral, and propagation properties of the generated terahertz pulses are presented. In addition, we discuss possibilities for further increasing the energy of single-cycle terahertz pulses obtained by optical rectification.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.33.002497DOI Listing

Publication Analysis

Top Keywords

terahertz pulses
16
single-cycle terahertz
12
optical rectification
12
generation microj
8
microj single-cycle
8
pulses 100
8
100 repetition
8
repetition rate
8
pulses
5
terahertz
4

Similar Publications

Controlling the functional properties of quantum materials with light has emerged as a frontier of condensed-matter physics, leading to the discovery of various light-induced phases of matter, such as superconductivity, ferroelectricity, magnetism and charge density waves. However, in most cases, the photoinduced phases return to equilibrium on ultrafast timescales after the light is turned off, limiting their practical applications. Here we use intense terahertz pulses to induce a metastable magnetization with a remarkably long lifetime of more than 2.

View Article and Find Full Text PDF

The current state-of-the art in pharmaceutical continuous film coating - A review.

Int J Pharm

December 2024

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

In this decade, one of the major trends in the pharmaceutical industry is the adoption of continuous manufacturing. This requires the development of continuous equivalents of essential pharmaceutical processes such as film coating. The process of film coating is the last step of the processing of solid dosage forms and is critical because it determines the visual appearance of the end product, along with ensuring its stability and possibly even defining the rate of drug release.

View Article and Find Full Text PDF

Polarimetry terahertz imaging of human breast cancer surgical specimens.

J Med Imaging (Bellingham)

November 2024

University of Arkansas, Department of Electrical Engineering and Computer Science, Fayetteville, Arkansas, United States.

Article Synopsis
  • The study focuses on using terahertz (THz) polarimetry imaging to enhance contrast between cancerous tissue and healthy tissue in human breast cancer specimens.
  • It utilizes multiple polarizations to capture how cancerous cells interact differently with THz electric fields compared to healthy cells, aiming for better image clarity.
  • Results show that cross-polarization signals are dependent on tissue orientation, revealing patterns that help differentiate between various tissue types, indicating THz polarimetry's potential for improved imaging in tumor analysis.
View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

Terahertz metamaterials for light-driven magnetism.

Nanophotonics

April 2024

Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venezia Mestre, Italy.

We describe the design of two types of metamaterials aimed at enhancing terahertz field pulses that can be used to control the magnetic state in condensed matter systems. The first structure is a so-called "dragonfly" antenna, able to realize a five-fold enhancement of the impinging terahertz magnetic field, while preserving its broadband features. For currently available state-of-the-art table top sources, this leads to peak magnetic fields exceeding 1 T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!