Heterogeneity of the vasculature in different organs has been well documented by the method of in vivo phage display. Using this technology, several peptide ligands that home to tissue-specific vascular endothelial cell have been isolated. Such peptide ligands directed against specific vascular surface molecules can be used as targeted therapeutic compounds or imaging agents to the vasculature of the specific organ in vivo. In this study, the authors perform in vivo selection in mice using a phage display random peptide library and separated phage peptides homing to mouse thymus by 3 rounds of in vivo panning. Sequence analysis showed that CHAQGSAEC is the dominant peptide sequence. Immunohistochemistry confirmed that the phage peptide CHAQGSAEC can bind specifically to thymus blood vessels in mice. Furthermore, phage peptide CHAQGSAEC and free peptide CHAQGSAEC can inhibit the bioactivity of thymus output in vivo. These results indicate the feasibility of the targeted peptide for possible function as a kind of tool to inhibit thymus bioactivity or as a targeted compound for targeted medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057108326537DOI Listing

Publication Analysis

Top Keywords

phage display
12
peptide chaqgsaec
12
peptide
9
mouse thymus
8
targeted peptide
8
vivo phage
8
inhibit bioactivity
8
bioactivity thymus
8
thymus output
8
output vivo
8

Similar Publications

Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) in the stroma of solid tumors promote an immunosuppressive tumor microenvironment (TME) that drives resistance to therapies. The expression of the protease fibroblast activation protein (FAP) on the surface of CAFs has made FAP a target for development of therapies to dampen immunosuppression. Relatively few biologics have been developed for FAP and none have been developed that exploit the unique engagement properties of Variable New Antigen Receptors (VNARs) from shark antibodies.

View Article and Find Full Text PDF

In phage display technology, exogenous DNA is inserted into the phage genome, which generates a fusion protein with the phage coat protein, facilitates expression and promotes biological activity. This approach is primarily used to screen antibody libraries owing to its high library capacity and fast technical cycle; additionally, various types of genetically altered antibodies can be easily produced. In this study, we fused the pIII structural protein of the M13K07 phage with a scFv created by connecting the VH and VL domains of an anti-IFN-γ antibody.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

Bacteriophage M13KE as a Nanoparticle Platform to Display and Deliver a Pathogenic Epitope: Development of an Effective Porcine Epidemic Diarrhoea Virus Vaccine.

Microb Pathog

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201100, China. Electronic address:

Porcine epidemic diarrhoea virus (PEDV) is a porcine enteric coronavirus, outbreaks and epidemics of which have caused huge economic losses to the livestock industry. The disadvantage of existing PEDV vaccines is that the unstable efficacy and high cost limit their widespread use. Therefore, there is an urgent need to develop a recombinant transgenic vaccine candidate for PEDV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!