Desmosine as a biomarker of elastin degradation in COPD: current status and future directions.

Eur Respir J

Laboratory of Biochemistry and Genetics, Institute of Respiratory Disease, IRCCS San Matteo Hospital Foundation, Pavia, Italy.

Published: November 2008

Desmosine (DES) and isodesmosine (IDES) are two unusual, tetrafunctional, pyridinium ring-containing amino acids involved in elastin cross-linking. Being amino acids unique to mature, cross-linked elastin, they are useful for discriminating peptides derived from elastin breakdown from precursor elastin peptides. According to these features, DES and IDES have been extensively discussed as potentially attractive indicators of elevated lung elastic fibre turnover and markers of the effectiveness of agents with the potential to reduce elastin breakdown. In the present manuscript, immunology-based and separation methods for the evaluation of DES and IDES are discussed, along with studies reporting increased levels of urine excretion in chronic obstructive pulmonary disease (COPD) patients with and without alpha(1)-antitrypsin deficiency. The results of the application of DES and IDES as surrogate end-points in early clinical trials in COPD are also reported. Finally, recent advances in detection techniques, including liquid chromatography tandem mass spectrometry and high-performance capillary electrophoresis with laser-induced fluorescence, are discussed. These techniques allow detection of DES and IDES at very low concentration in body fluids other than urine, such as plasma or sputum, and will help the understanding of whether DES and IDES are potentially useful in monitoring therapeutic intervention in COPD.

Download full-text PDF

Source
http://dx.doi.org/10.1183/09031936.00174807DOI Listing

Publication Analysis

Top Keywords

des ides
20
amino acids
8
elastin breakdown
8
elastin
6
des
6
ides
6
desmosine biomarker
4
biomarker elastin
4
elastin degradation
4
copd
4

Similar Publications

Half-Life Extension of the IgG-Degrading Enzyme (IdeS) Using Fc-Fusion Technology.

Eur J Immunol

December 2024

Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.

Imlifidase (IdeS) is a bacterial protease that hydrolyzes human IgG in their hinge region, decreasing their half-life and abrogating their Fc-mediated properties. It is now successfully used in therapy to prevent graft rejection during kidney transplants and is being clinically evaluated in several IgG-mediated autoimmune diseases. IdeS short half-life however limits its clinical use, particularly in the case of chronic diseases that would request repeated administrations.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment.

View Article and Find Full Text PDF

Organic acid-based deep eutectic solvents (DESs) as catalysts always suffer from weak stability and low recyclability due to the accumulation of organic oxidative products in the DES phase. Herein, a completely inorganic deep eutectic solvent (IDES) ZnCl/PA with zinc chloride (ZnCl) and phosphoric acid (PA) as precursors is constructed to realize liquid-liquid interface catalysis for desulfurization of fuel and product self-separation for the first time. Owing to the inorganic nature, the organic oxidative products are accumulated at the interface between the IDES and fuel rather than the IDES phase.

View Article and Find Full Text PDF

Imlifidase, a new option to optimize the management of patients with hemophilia A on emicizumab.

J Thromb Haemost

October 2023

Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, CNRS, Sorbonne Université, Université Paris Cité, Paris, France. Electronic address:

Background: Emicizumab is a bispecific, chimeric, humanized immunoglobulin G (IgG)4 that mimics the procoagulant activity of factor (F) VIII (FVIII). Its long half-life and subcutaneous route of administration have been life-changing in treating patients with hemophilia A (HA) with or without FVIII inhibitors. However, emicizumab only partially mimics FVIII activity; it prevents but does not treat acute bleeds.

View Article and Find Full Text PDF

Excited-State Dynamics in All-Polymer Blends with Polymerized Small-Molecule Acceptors.

Adv Sci (Weinh)

August 2023

College of Physics, Nanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing, 211106, China.

Polymerizing small-molecular acceptors (SMAs) is a promising route to construct high performance polymer acceptors of all-polymer solar cells (all-PSCs). After SMA polymerization, the microstructure of molecular packing is largely modified, which is essential in regulating the excited-state dynamics during the photon-to-current conversion. Nevertheless, the relationship between the molecular packing and excited-state dynamics in polymerized SMAs (PSMAs) remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!