Aims: Reentrant arrhythmias often develop in the setting of myocardial infarction and ensuing slow propagation. Increased Na(+) channel expression could prevent or disrupt reentrant circuits by speeding conduction if channel availability is not limited by membrane depolarization within the diseased myocardium. We therefore asked if, in the setting of membrane depolarization, action potential (AP) upstroke and normal conduction can be better preserved by the expression of a Na(+) channel isoform with altered biophysical properties compared to the native cardiac Na(+) channel isoform, namely having a positively shifted, voltage-dependent inactivation.
Methods And Results: The skeletal Na(+) channel isoform (SkM1) and the cardiac Na(+) channel isoform (Nav1.5) were expressed in newborn rat ventricular myocyte cultures with a point mutation introduced in Nav1.5 to increase tetrodotoxin (TTX) sensitivity so native and expressed currents could be distinguished. External K(+) was increased from 5.4 to 10 mmol/L to induce membrane depolarization. APs, Na(+) currents, and conduction velocity (CV) were measured. In control cultures, elevated K(+) significantly reduced AP upstroke ( approximately 75%) and CV ( approximately 25%). Expression of Nav1.5 did not protect AP upstroke from K(+) depolarization. In contrast, in SkM1 expressing cultures, high K(+) reduced AP upstroke <50% and conduction was not significantly reduced. In a simulated anatomical reentry setting (using a void), the angular velocity (AV) of induced reentry was faster and the excitable gap shorter in SkM1 cultures compared to control for both normal and high K(+).
Conclusion: Expression of SkM1 but not Nav1.5 preserves AP upstroke and CV in a K(+)-depolarized syncytium. The higher AV and shorter excitable gap observed during reentry excitation around a void in SkM1 cultures would be expected to facilitate reentry self-termination. SkM1 Na(+) channel expression represents a novel gene therapy for the treatment of reentrant arrhythmias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639131 | PMC |
http://dx.doi.org/10.1093/cvr/cvn290 | DOI Listing |
Eur J Hum Genet
January 2025
Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France.
Pigmentation is orchestrated by hundreds of genes involved in cellular functions going from early developmental fate of pigment cells to melanin synthesis. The Two Pore Channel 2 (TPC2) a Ca2+ and Na+ channel acidifies melanosomal pH and thus inhibits pigmentation. A young patient was recently reported with generalized hypopigmentation but uneventful ocular examination, caused by the de novo heterozygous TPCN2 variant c.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.
View Article and Find Full Text PDFNat Mater
January 2025
2nd Physics Institute, University of Stuttgart, Stuttgart, Germany.
The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFOpening of the cardiac voltage-gated Na+ channel (Nav1.5) is responsible for robust depolarization of the cardiac action potential, while inactivation, which rapidly follows, allows for repolarization. Regulation of both the voltage- and time-dependent kinetics of Nav1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!