Identification of a product specific beta-amyrin synthase from Arabidopsis thaliana.

Plant Physiol Biochem

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Published: January 2009

Triterpene skeletons are produced by oxidosqualene cyclases (OSCs). The genome sequencing of Arabidopsis thaliana revealed the presence of thirteen OSC homologous genes including At1g78950, which has been revised recently as two independent ORFs, namely At1g78950 and At1g78955. The cDNA corresponding to the revised At1g78950 was obtained by RT-PCR, ligated into Saccharomyces cerevisiae expression vector pYES2, and expressed in a lanosterol synthase deficient S. cerevisiae strain. LC-MS and NMR analyses of the accumulated product in the host cells showed that the product of At1g78950 is beta-amyrin, indicating that At1g78950 encodes a beta-amyrin synthase (EC 5.4.99.-).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2008.09.007DOI Listing

Publication Analysis

Top Keywords

beta-amyrin synthase
8
arabidopsis thaliana
8
at1g78950
5
identification product
4
product specific
4
specific beta-amyrin
4
synthase arabidopsis
4
thaliana triterpene
4
triterpene skeletons
4
skeletons produced
4

Similar Publications

Endophytes from medicinal plants are potential biocontrol agents against Fusarium oxysporum f. sp. cubense (Foc), which is the causative fungus of banana wilt disease.

View Article and Find Full Text PDF

Discovery and Functional Identification of 2,3-Oxidosqualene Cyclases and Cytochrome P450s in Triterpenoid Metabolic Pathways of .

J Agric Food Chem

December 2024

Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.

Article Synopsis
  • * The study identified key enzyme genes involved in the triterpenoid metabolic pathways using transcriptome sequencing and synthetic biology, particularly focusing on two 2,3-oxidosqualene cyclases and two cytochrome P450s.
  • * Researchers successfully reconstructed the biosynthetic pathway for ursane and oleanane-type triterpenoids in a yeast host, detailing the enzymatic reactions necessary for producing important compounds like ursolic acid and oleanolic acid.
View Article and Find Full Text PDF

Novel Differentially Expressed LncRNAs Regulate Artemisinin Biosynthesis in .

Life (Basel)

November 2024

Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Long non-coding RNAs (lncRNAs) are crucial in regulating secondary metabolite production in plants, but their role in artemisinin (ART) biosynthesis, a key anti-malarial compound from Artemisia annua, remains unclear. Here, by investigating high-artemisinin-producing (HAP) and lowartemisinin-producing (LAP) genotypes, we found that the final artemisinin content in is influenced by the quantity of the precursor compounds. We report on RNA deep sequencing in HAP and LAP genotypes.

View Article and Find Full Text PDF

Identification, functional characterization and expression profiling of three triterpene synthases from the legume plant Vigna unguiculata.

Biochem Biophys Res Commun

December 2024

Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Viopolis, Larissa, 41500, Greece. Electronic address:

Oxidosqualene cyclases (OSCs) are important regulatory enzymes involved in cyclization reactions of 2, 3-oxidosqualene to form triterpenes and sterols. This study presents the identification and characterization of three OSC genes, a β - amyrin synthase (VuβAS), a lupeol synthase (VuLUS) and a cycloartenol synthase (VuCAS) in Vigna unguiculata, an edible leguminous plant with high nutritional and nutraceutical value. Phylogenetic analysis showed that the VuβAS, VuLUS and VuCAS were clustered within the clades of previously characterized β - amyrin synthases, lupeol synthases and cycloartenol synthases.

View Article and Find Full Text PDF
Article Synopsis
  • Ursolic acid is gaining attention for its pharmacological properties and market potential, but current extraction methods from loquat leaves are inefficient and costly.
  • A biosynthesis approach using α-amyrin as a precursor offers a promising alternative, as its yield is linked to ursolic acid production.
  • Researchers identified and cloned four enzymes from different plants capable of producing α-amyrin, with AaOSC2 showing the highest efficiency, which can help in developing engineered yeast strains for enhanced ursolic acid production.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!