The brain uses context and prior knowledge to repair degraded sensory inputs and improve perception. For example, listeners hear speech continuing uninterrupted through brief noises, even if the speech signal is artificially removed from the noisy epochs. In a functional MRI study, we show that this temporal filling-in process is based on two dissociable neural mechanisms: the subjective experience of illusory continuity, and the sensory repair mechanisms that support it. Areas mediating illusory continuity include the left posterior angular gyrus (AG) and superior temporal sulcus (STS) and the right STS. Unconscious sensory repair occurs in Broca's area, bilateral anterior insula, and pre-supplementary motor area. The left AG/STS and all the repair regions show evidence for word-level template matching and communicate more when fewer acoustic cues are available. These results support a two-path process where the brain creates coherent perceptual objects by applying prior knowledge and filling-in corrupted sensory information.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653101 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2008.09.045 | DOI Listing |
Brief Bioinform
November 2024
Department of Electronic Engineering, Tsinghua University, 100084 Beijing, China.
Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database coverage, particularly for novel or poorly characterized relationships.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
School of Health and Biomedical Sciences, RMIT University, 220 3-5 Plenty Road, Bundoora VIC 3082, Australia. Electronic address:
Alzheimer's Disease (AD) is a chronic neurodegenerative disorder characterized by the accumulation of toxic amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) of tau protein in the brain. Microglia, key immune cells of the central nervous system, play an important role in AD development and progression, primarily through their responses to Aβ and NFTs. Initially, microglia can clear Aβ, but in AD, chronic activation overwhelms protective mechanisms, leading to sustained neuroinflammation that enhances plaque toxicity, setting off a damaging cycle that affects neurons, astrocytes, cerebral vasculature, and other microglia.
View Article and Find Full Text PDFNeurosciences (Riyadh)
January 2025
From the Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.
The hippocampus, noted as (HC), plays a crucial role in the processes of learning, memory formation, and spatial navigation. Recent research reveals that this brain region can undergo structural and functional changes due to environmental exposures, including stress, noise pollution, sleep deprivation, and microgravity. This review synthesizes findings from animal and human studies, emphasizing the HC's plasticity in response to these factors.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Bank voles are susceptible to prion strains from many different species, yet the molecular mechanisms underlying the ability of bank vole prion protein (BVPrP) to function as a universal prion acceptor remain unclear. Potential differences in molecular environments and protein interaction networks on the cell surface of brain cells may contribute to BVPrP's unusual behavior. To test this hypothesis, we generated knock-in mice that express physiological levels of BVPrP (M109 isoform) and employed mass spectrometry to compare the interactomes of mouse (Mo) PrP and BVPrP following mild in vivo crosslinking of brain tissue.
View Article and Find Full Text PDFNeuroimage
January 2025
Academy of Wellness and Human Development, Hong Kong Baptist University, Hong Kong, China.
The ability to infer a speaker's utterance within a particular context for the intended meaning is central to communication. Yet, little is known about the underlying neurocomputational mechanisms of pragmatic inference, let alone relevant differences among individuals. Here, using a reference game combined with model-based functional magnetic resonance imaging (fMRI), we showed that an individual-level pragmatic inference model was a better predictor of listeners' performance than a population-level model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!