Polymersome carriers: from self-assembly to siRNA and protein therapeutics.

Eur J Pharm Biopharm

Biophysical Engineering and NanoBio-Polymers Lab, University of Pennsylvania, Philadelphia, PA 19104, USA.

Published: March 2009

Polymersomes are polymer-based vesicular shells that form upon hydration of amphiphilic block copolymers. These high molecular weight amphiphiles impart physicochemical properties that allow polymersomes to stably encapsulate or integrate a broad range of active molecules. This robustness together with recently described mechanisms for controlled breakdown of degradable polymersomes as well as escape from endolysosomes suggests that polymersomes might be usefully viewed as having structure/property/function relationships somewhere between lipid vesicles and viral capsids. Here we summarize the assembly and development of controlled release polymersomes to encapsulate therapeutics ranging from small molecule anti-cancer drugs to siRNA and therapeutic proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2702089PMC
http://dx.doi.org/10.1016/j.ejpb.2008.09.025DOI Listing

Publication Analysis

Top Keywords

polymersomes
5
polymersome carriers
4
carriers self-assembly
4
self-assembly sirna
4
sirna protein
4
protein therapeutics
4
therapeutics polymersomes
4
polymersomes polymer-based
4
polymer-based vesicular
4
vesicular shells
4

Similar Publications

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

The article is devoted to the creation of enzymatic nanoreactors based on polystyrene-block-poly(acrylic acid) (PS-b-PAA) copolymers containing bioscavengers capable of neutralizing toxic esters both in the body and in the environment. Block copolymers of different amphiphilicity, hydrophilicity and molecular weights were synthesized and characterized using gel permeation chromatography, NMR and UV spectroscopy. Polymeric nanocontainers in the absence and presence of human butyrylcholinesterase were made by film hydration and characterized by dynamic light scattering and microscopy methods.

View Article and Find Full Text PDF
Article Synopsis
  • Nanocatalytic medicine aims to improve cancer treatment by developing nanotechnologies that selectively target tumor cells while sparing normal cells.
  • The proposed solution involves using pH- and redox-responsive ferrocene-containing polymersomes (FcPsomes) that can control radical production and release therapeutic molecules based on their environment.
  • These FcPsomes can facilitate a synergistic treatment approach by producing reactive oxygen species through the Fenton reaction, allowing for targeted and safe therapies that adapt to the tumor's conditions.
View Article and Find Full Text PDF

Ginsenoside Rd-Loaded Antioxidant Polymersomes to Regulate Mitochondrial Homeostasis for Bone Defect Healing in Periodontitis.

Adv Healthc Mater

December 2024

Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.

Periodontitis is the leading cause of tooth loss in adults. Initially triggered by bacterial infection, it is characterized by subsequent dysregulation of mitochondrial homeostasis, leading to ongoing loss of periodontal tissue. Mitophagic flux, a critical physiological mechanism for maintaining mitochondrial homeostasis, is compromised in periodontitis.

View Article and Find Full Text PDF

This study investigates the formation and properties of vesicles produced via biocatalytic Polymerization-Induced Self-Assembly (bioPISA) as artificial cells. Methods for achieving size uniformity, including gentle centrifugation and sucrose gradient centrifugation, are explored, and the effects of stirring speed on vesicle morphology is investigated. The internal structure of the vesicles, characterized by a polymer-rich matrix, is analyzed using fluorescence correlation spectroscopy (FCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!