Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cyclin E is the Cdk2-regulatory subunit required for the initiation of DNA replication at the G1/S transition. It accumulates in late G1 phase and gets rapidly degraded by the ubiquitin/proteasome pathway during S phase. The degradation of cyclin E is a consequence of its phosphorylation and subsequent isomerization by the peptidyl-prolyl isomerase Pin1. We show that in the colon cancer cells HT-29 the inhibition of the chaperone function of Hsp90 by geldanamycin (GA) enhances the ubiquitinylation of cyclin E and triggers active degradation via the proteasome pathway. As Hsp90 forms multiprotein complexes with and regulates the function and cell contents of numerous signaling proteins, this observation suggests a direct interaction between Hsp90 and cyclin E. However, experiments using cell lysate fractionation did not reveal the presence of complexes containing both Hsp90 and cyclin E. Coupled transcription/translation experiments also failed to detect the formation of complexes between newly synthesized cyclin E and Hsp90. We conclude that Hsp90 can regulate the degradation of cellular proteins without binding to them, by an indirect mechanism. This conclusion postulates a new category of proteins that are affected by the inactivation of Hsp90. Our observations do not support the possible involvement of a PPIase in this indirect mechanism. Besides, we did not observe active geldanamycin-dependent degradation of cyclin E in the prostate cancer-derived cell line DU-145, indicating that the Hsp90-dependent stabilization of cyclin E requires specific regulatory mechanism which may be lost in certain types of cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2008.09.038 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!