SERMs act as ER agonists in bone despite their antagonistic properties in other tissues. As well as inhibiting bone remodelling, this effect may involve stimulation of osteoblast activity, in light of evidence from recent in vivo studies. However, progress in exploring this action has been hampered by a lack of accurate in vitro models. For example, ER antagonists are reported to stimulate reporter assays based on estrogen target genes in osteoblasts, contrary to their inhibitory effects in vivo. We examined whether evaluating global aspects of ER function provides a more accurate reflection of ER activation in osteoblasts, based on the use of morphological and/or transcriptional read-outs with green fluorescent protein (GFP)-receptor chimeras. Osteoblast-like (ROS and U2OS) and breast cancer (MCF7) cells were transfected with a human ERalpha-GFP fusion protein, and treated with ER agonists (17beta-estradiol, and dienestrol), antagonists (ICI 182,780 and ZK 164015) and SERMs (tamoxifen, raloxifene, 4-hydroxytamoxifen (4-HT) and hexestrol). We investigated cellular compartmentalisation of these constructs by fluorescence microscopy, nuclear mobility by fluorescence recovery after photobleaching (FRAP), and global activation of estrogenic transcription using a ERE-luc reporter. SERMs caused a modest increase in ERE-luc activity in osteoblast-like cells (but not in breast cells), and a reduction in nuclear mobility in breast (but not osteoblast-like) cells. These studies were then repeated using a GFP chimera where the human GR ligand binding domain (LBD) was replaced by the human ERalpha LBD (ERGR-GFP), combined with a GRE-luc reporter. Interestingly, SERMs increased both cytoplasmic to nuclear translocation of ERGR-GFP, and GRE-luc reporter activity, in osteoblast-like (but not breast) cells. Indeed, transcriptional responses to SERMs in osteoblast-like cells were considerably greater with the ERGR/GRE-luc than the ERalpha/ERE-luc system, 4-HT inducing 300 and 25% increases in reporter activity respectively. ER antagonists were entirely without effect. We conclude that evaluation of global estrogenic activity, as opposed to activation of a specific target gene, provides a more accurate read-out for osteoblast stimulation. In particular, ERGR-mediated GRE-luc activity provides a high signal response to estrogen agonists and SERMs, in a cell context dependent manner closely resembling that observed in vivo. Further studies utilising this system are justified to explore the mechanistic basis for estrogenic stimulation of osteoblast activity, and to identify newer SERMs capable of targeting this activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2008.09.016DOI Listing

Publication Analysis

Top Keywords

osteoblast-like cells
12
activity
9
estrogenic activity
8
stimulation osteoblast
8
osteoblast activity
8
vivo studies
8
nuclear mobility
8
activity osteoblast-like
8
breast cells
8
gre-luc reporter
8

Similar Publications

Niobium-Containing Phosphate Glasses Prepared by the Liquid-Phase Method.

Int J Mol Sci

December 2024

Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

Phosphate invert glasses (PIGs) have been attracting attention as materials for bone repair. PIGs have a high flexibility in chemical composition because they are composed of orthophosphate and pyrophosphate and can easily incorporate various ions in their glass networks. In our previous work, incorporation of niobium (Nb) into melt-quench-derived PIGs was effective in terms of controlling their ion release, and Nb ions promoted the activity of osteoblast-like cells.

View Article and Find Full Text PDF

Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity.

Int J Mol Sci

December 2024

Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan.

β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity.

View Article and Find Full Text PDF

In orthopedics, the use of anti-infective biomaterials is considered the most promising strategy to contrast the bacterial contamination of implant surfaces and reduce the infection rate. KSL, KSL-W, and Dadapin-1 are three antimicrobial peptides (AMPs) that possess significant antibacterial properties, making them promising candidates for producing anti-infective biomaterials not based on antibiotics. To fully assess their true potential, this study explores in detail their cytocompatibility on human osteoblast-like MG63 cells, murine fibroblastoid L929 cells, and hMSCs.

View Article and Find Full Text PDF

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.

View Article and Find Full Text PDF

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!