The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area near Bobo-Dioulasso, Burkina Faso. During the first 2 weeks posttreatment, the mixture was as effective as deltamethrin alone and was more effective at killing An. gambiae that carried knockdown resistance (kdr) or insensitive acetylcholinesterase resistance (Ace1R) genes. The mixture seemed to not kill more susceptible genotypes for the kdr or Ace1R alleles. Mixing repellents and organophosphates on bed nets could be used to control insecticide-resistant malaria vectors if residual activity of the mixture is extended and safety is verified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630727PMC
http://dx.doi.org/10.3201/eid1411.071575DOI Listing

Publication Analysis

Top Keywords

malaria vectors
12
insecticide-resistant malaria
8
mosquito populations
8
bed nets
8
mixture
4
mixture controlling
4
controlling insecticide-resistant
4
vectors spread
4
spread resistance
4
resistance pyrethroids
4

Similar Publications

Reticulocyte Binding Protein Homologue (RH5), a leading malaria vaccine candidate, is essential for erythrocyte invasion by the parasite, interacting with the human host receptor, basigin. RH5 has a small number of polymorphisms relative to other blood-stage antigens, and studies have shown that vaccine-induced antibodies raised against RH5 are strain-transcending, however most studies investigating RH5 diversity have been done in Africa. Understanding the genetic diversity and evolution of malaria antigens in other regions is important for their validation as vaccine candidates.

View Article and Find Full Text PDF

Impacts of COVID-19 on malaria elimination strategies in Asia: A scoping review.

Narra J

December 2024

Center of Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia.

The global malaria program has faced setbacks due to disruptions in health services caused by COVID-19 pandemic. Despite these challenges, Asia that primarily comprised of low and middle-income countries (LMICs), continues to make strides towards malaria elimination. This scoping review explored the impact of the COVID-19 pandemic on malaria control programs in Asian countries with varying levels of malaria endemicity.

View Article and Find Full Text PDF

Larviciding for malaria control and elimination in Africa.

Malar J

January 2025

RBM Partnership Vector Control Working Group, Chem du Pommier 40, 1218, Le Grand-Saconnex, Switzerland.

Background: Global progress toward malaria elimination and eradication goals has stagnated in recent years, with many African countries reporting increases in malaria morbidity and mortality. Insecticide-treated nets and indoor residual spraying are effective, but the emergence and increased intensity of insecticide resistance and the challenge of outdoor transmission are undermining their impact. New tools are needed to get back on track towards global targets.

View Article and Find Full Text PDF

Large-scale production of infective larvae from engorged .

Front Trop Dis

December 2024

Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon.

Background: is transmitted by species and affects hundred millions of inhabitants in about 33 countries in sub-Saharan Africa. It is known that Mansonellosis due to do not result in a clear clinical picture, but down-regulates the immunity of patients predisposing them to other diseases like tuberculosis, HIV and malaria or damping vaccine efficacy. However, research about novel drugs against this filarial nematode is missing because of the lack of parasite material.

View Article and Find Full Text PDF

Background: The Anopheles culicifacies complex is one of the most important malaria vectors in Southeast Asia and Southeastern Iran. Although the sibling species within this complex are morphologically indistinguishable, they differ significantly in their disease transmission potential, blood-feeding behaviour, and other biological traits. Cytogenetic and chromosomal studies have identified five sibling species within this complex: A, B, C, D, and E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!