A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genomic organization and phylogenetic utility of deer mouse (Peromyscus maniculatus) lymphotoxin-alpha and lymphotoxin-beta. | LitMetric

Background: Deer mice (Peromyscus maniculatus) are among the most common mammals in North America and are important reservoirs of several human pathogens, including Sin Nombre hantavirus (SNV). SNV can establish a life-long apathogenic infection in deer mice, which can shed virus in excrement for transmission to humans. Patients that die from hantavirus cardiopulmonary syndrome (HCPS) have been found to express several proinflammatory cytokines, including lymphotoxin (LT), in the lungs. It is thought that these cytokines contribute to the pathogenesis of HCPS. LT is not expressed by virus-specific CD4+ T cells from infected deer mice, suggesting a limited role for this pathway in reservoir responses to hantaviruses.

Results: We have cloned the genes encoding deer mouse LTalpha and LTbeta and have found them to be highly similar to orthologous rodent sequences but with some differences in promoters elements. The phylogenetic analyses performed on the LTalpha, LTbeta, and combined data sets yielded a strongly-supported sister-group relationship between the two murines (the house mouse and the rat). The deer mouse, a sigmodontine, appeared as the sister group to the murine clade in all of the analyses. High bootstrap values characterized the grouping of murids.

Conclusion: No conspicuous differences compared to other species are present in the predicted amino acid sequences of LTalpha or LTbeta; however, some promoter differences were noted in LTbeta. Although more extensive taxonomic sampling is required to confirm the results of our analyses, the preliminary findings indicate that both genes (analyzed both separately and in combination) hold potential for resolving relationships among rodents and other mammals at the subfamily level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605436PMC
http://dx.doi.org/10.1186/1471-2172-9-62DOI Listing

Publication Analysis

Top Keywords

deer mouse
12
deer mice
12
ltalpha ltbeta
12
peromyscus maniculatus
8
deer
6
genomic organization
4
organization phylogenetic
4
phylogenetic utility
4
utility deer
4
mouse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!