Purpose: To develop and validate methods for small-animal CNS radiotherapy using the microRT system.

Materials And Methods: A custom head immobilizer was designed and built to integrate with a pre-existing microRT animal couch. The Delrin couch-immobilizer assembly, compatible with multiple imaging modalities (CT, microCT, microMR, microPET, microSPECT, optical), was first imaged via CT in order to verify the safety and reproducibility of the immobilization method. Once verified, the subject animals were CT-scanned while positioned within the couch-immobilizer assembly for treatment planning purposes. The resultant images were then imported into CERR, an in-house-developed research treatment planning system, and registered to the microRTP treatment planning space using rigid registration. The targeted brain was then contoured and conformal radiotherapy plans were constructed for two separate studies: (1) a whole-brain irradiation comprised of two lateral beams at the 90 degree and 270 degree microRT treatment positions and (2) a hemispheric (left-brain) irradiation comprised of a single A-P vertex beam at the 0 degree microRT treatment position. During treatment, subject animals (n=48) were positioned to the CERR-generated treatment coordinates using the three-axis microRT motor positioning system and were irradiated using a clinical Ir-192 high-dose-rate remote after-loading system. The radiation treatment course consisted of 5 Gy fractions, 3 days per week. 90% of the subjects received a total dose of 30 Gy and 10% received a dose of 60 Gy.

Results: Image analysis verified the safety and reproducibility of the immobilizer. CT scans generated from repeated reloading and repositioning of the same subject animal in the couch-immobilizer assembly were fused to a baseline CT. The resultant analysis revealed a 0.09 mm average, center-of-mass translocation and negligible volumetric error in the contoured, murine brain. The experimental use of the head immobilizer added 0.1 mm to microRT spatial uncertainty along each axis. Overall, the total spatial uncertainty for the prescribed treatments was +/-0.3 mm in all three axes, a 0.2 mm functional improvement over the original version of microRT. Subject tolerance was good, with minimal observed side effects and a low procedure-induced mortality rate. Throughput was high, with average treatment times of 7.72 and 3.13 min/animal for the whole-brain and hemispheric plans, respectively (dependent on source strength).

Conclusions: The method described exhibits conformality more in line with the size differential between human and animal patients than provided by previous prevalent approaches. Using pretreatment imaging and microRT-specific treatment planning, our method can deliver an accurate, conformal dose distribution to the targeted murine brain (or a subregion of the brain) while minimizing excess dose to the surrounding tissue. Thus, preclinical animal studies assessing the radiotherapeutic response of both normal and malignant CNS tissue to complex dose distributions, which closer resemble human-type radiotherapy, are better enabled. The procedural and mechanistic framework for this method logically provides for future adaptation into other murine target organs or regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736759PMC
http://dx.doi.org/10.1118/1.2977762DOI Listing

Publication Analysis

Top Keywords

treatment planning
16
couch-immobilizer assembly
12
treatment
10
micrort
8
head immobilizer
8
safety reproducibility
8
subject animals
8
irradiation comprised
8
degree micrort
8
micrort treatment
8

Similar Publications

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

Background: The co-occurrence of Rathke cleft cysts (RCCs) and meningiomas in the sellar and parasellar regions represents an exceedingly rare clinical entity. Achieving maximal resection through a single operative approach while minimizing adverse events is challenging, often necessitating multiple surgical approaches, as suggested by previous reports.

Observations: The authors report the case of a 49-year-old female with a history of kidney transplant who presented with headaches and was diagnosed with coexisting RCC and meningioma in the sellar and planum sphenoidale regions, respectively.

View Article and Find Full Text PDF

CBA-1205 is a novel humanized antibody targeting delta-like 1 homolog (DLK1) that enhances antibody-dependent cellular cytotoxicity activity. DLK1 overexpression has been reported in various cancer types, such as hepatocellular carcinoma and neuroblastoma. CBA-1205 demonstrates potent antitumor activity in multiple tumor models, making it a potential treatment option for DLK1-expressing cancers.

View Article and Find Full Text PDF

Background: The worldwide rise in the prevalence of noncommunicable diseases has increased the recognition of the need to identify modifiable risk factors for preventing and managing these diseases. The office worker, as a representative group of physically inactive workers, is exposed to risk factors for metabolic syndrome, which is a primary driver of noncommunicable diseases. The use of virtual reality (VR) exergames may offer a potential solution to the problem of increasing noncommunicable disease prevalence, as it can help individuals increase their physical activity levels while providing a more immersive experience.

View Article and Find Full Text PDF

Background: Peritoneal metastasis (PM) after the rupture of hepatocellular carcinoma (HCC) is a critical issue that negatively affects patient prognosis. Machine learning models have shown great potential in predicting clinical outcomes; however, the optimal model for this specific problem remains unclear.

Methods: Clinical data were collected and analyzed from 522 patients with ruptured HCC who underwent surgery at 7 different medical centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!