Collagen types I and III can be characterized at the molecular level (at the tens to hundreds of nanometers scale) using small angle x-ray scattering (SAXS). Although collagen fibril structural parameters at this length scale have shown differences between diseased and nondiseased breast tissues, a comprehensive analysis involving a multitude of features with a large (>50) patient cohort has not previously been investigated. Breast tissue samples were excised from 80 patients presenting with either a breast lump or reduction mammoplasty. From these, invasive carcinoma, benign tissue, and normal parenchyma were analyzed. Parameters related to collagen structure, including longitudinal (axial) and lateral (equatorial) features, polar angle features, total scattering intensity, and tissue heterogeneity effects, were extracted from the SAXS patterns and examined. The amplitude of the third-order axial peak and the total scattering intensity (amorphous scatter) showed the most separation between tissue groups and a classification model using these two parameters demonstrated an accuracy of over 95% between invasive carcinoma and mammoplasty patients. Normal tissue taken from disease-free patients (mammoplasty) and normal tissue taken from patients with presence of disease showed significant differences, suggesting that SAXS may provide different diagnostic information from that of conventional histopathology.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.2977667DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
8
invasive carcinoma
8
total scattering
8
scattering intensity
8
normal tissue
8
tissue
7
scattering classifying
4
classifying tissue
4
tissue types
4
types associated
4

Similar Publications

Antibody-based pharmaceuticals are the leading biologic drug platform (> $75B/year). Despite a wealth of information collected on them, there is still a lack of knowledge on their inter-domain structural distributions, which impedes innovation and development. To address this measurement gap, we have developed a new methodology to derive biomolecular structure ensembles from distance distribution measurements via a library of tagged proteins bound to an unlabeled and otherwise unmodified target biologic.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.

View Article and Find Full Text PDF

Extraction and characterization of spherical nanocellulose from sesame husks.

Heliyon

January 2025

Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria.

The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin.

View Article and Find Full Text PDF

In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!