In prostate radiotherapy, setup errors with respect to the patient's bony anatomy can be reduced by aligning 2D megavoltage (MV) portal images acquired during treatment to a reference 3D kilovoltage (kV) CT acquired for treatment planning purposes. The purpose of this study was to evaluate a fully automated 2D-3D registration algorithm to quantify setup errors in 3D through the alignment of line-enhanced portal images and digitally reconstructed radiographs computed from the CT. The line-enhanced images were obtained by correlating the images with a filter bank of short line segments, or "sticks" at different orientations. The proposed methods were validated on (1) accurately collected gold-standard data consisting of a 3D kV cone-beam CT scan of an anthropomorphic phantom of the pelvis and 2D MV portal images in the anterior-posterior (AP) view acquired at 15 different poses and (2) a conventional 3D kV CT scan and weekly 2D MV AP portal images of a patient over 8 weeks. The mean (and standard deviation) of the absolute registration error for rotations around the right-lateral (RL), inferior-superior (IS), and posterior-anterior (PA) axes were 0.212 degree (0.214 degree), 0.055 degree (0.033 degree) and 0.041 degree (0.039 degree), respectively. The corresponding registration errors for translations along the RL, IS, and PA axes were 0.161 (0.131) mm, 0.096 (0.033) mm, and 0.612 (0.485) mm. The mean (and standard deviation) of the total registration error was 0.778 (0.543) mm. Registration on the patient images was successful in all eight cases as determined visually. The results indicate that it is feasible to automatically enhance features in MV portal images of the pelvis for use within a completely automated 2D-3D registration framework for the accurate determination of patient setup errors. They also indicate that it is feasible to estimate all six transformation parameters from a 3D CT of the pelvis and a single portal image in the AP view.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910153 | PMC |
http://dx.doi.org/10.1118/1.2975143 | DOI Listing |
J Hepatocell Carcinoma
January 2025
School of Medicine, University of Electronic Science and Technology, Sichuan, China.
Objective: This study aimed to investigate how dynamic contrast-enhanced CT imaging signs correlate with the differentiation grade and microvascular invasion (MVI) of hepatocellular carcinoma (HCC), and to assess their predictive value for MVI when combined with clinical characteristics.
Methods: We conducted a retrospective analysis of clinical data from 232 patients diagnosed with HCC at our hospital between 2021 and 2022. All patients underwent preoperative enhanced CT scans, laboratory tests, and postoperative pathological examinations.
BMJ Open
December 2024
Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA.
Introduction: Early lung cancer screening (LCS) through low-dose CT (LDCT) is crucial but underused due to various barriers, including incomplete or inaccurate patient smoking data in the electronic health record and limited time for shared decision-making. The objective of this trial is to investigate a patient-centred intervention, MyLungHealth, delivered through the patient portal. The intervention is designed to improve LCS rates through increased identification of eligible patients and informed decision-making.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Internal Medicine and Pediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium; Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium. Electronic address:
Portal hypertension (PH) can cause severe complications in patients with advanced chronic liver disease (aCLD). The pan-peroxisome proliferator-activated receptor (pan-PPAR) agonist lanifibranor reduces portal pressure in preclinical models of aCLD. Since the effect on PH might be secondary to fibrosis improvement, we investigated the effect of lanifibranor on PH, hepatic and splanchnic angiogenesis in mouse models of fibrotic and prehepatic non-fibrotic PH.
View Article and Find Full Text PDFClin Radiol
December 2024
Department of Radiology, Affiliated Hospital of Guilin Medical University, No 15, Lequn Road, Guilin, Guangxi, 541001, China. Electronic address:
Aim: To investigate the value of the LR-5, which is based on hepatobiliary phase (HBP) hypointensity, for small hepatocellular carcinoma (sHCC) using LI-RADS v2018 criteria.
Materials And Methods: From January 2015 to December 2021 in institution 1, and from January 2019 to February 2022 in institution 2, 239 patients at high risk for hepatocellular carcinoma (HCC) underwent contrast-enhanced MRI. Two radiologists independently evaluated the imaging features and classified them according to LI-RADS v2018 criteria, calculating the diagnostic performance of LR-5 based on consensus data.
Cancers (Basel)
December 2024
Department of Radiology, Kansai Medical University, Hirakata 573-1010, Osaka, Japan.
The liver is supplied by a dual blood flow system consisting of the portal vein and hepatic artery. Imaging techniques for diagnosing hepatocellular carcinoma (HCC) have been developed along with blood flow imaging, which visualizes the amount of arterial and portal blood flow. The diagnosis of HCC differentiation is important for early-stage liver cancer screening and determination of treatment strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!