Sulfite is a commonly used preservative in foods, beverages, and Pharmaceuticals because it is toxic to many microorganisms. In order to understand the global response of Saccharomyces cerevisiae to sulfite, genome-wide transcript profiling following sulfite exposure was obtained. The transcription levels of 21 genes were increased more than 2-fold, while those of 37 genes decreased to a similar extent. Genes involved in carbohydrate metabolism represented the highest proportion of induced genes, which may account for the easily acquired resistance to sulfite. Most of down-regulated genes are involved in transcription, protein biosynthesis, and cell growth. The down-regulation of these genes is thought to reflect growth arrest which occurs during sulfite treatment, allowing cells to save energy. Cells treated with sulfite generated more than 70% of acetaldehyde than untreated cells, suggesting that the increased acetaldehyde production is correlated with the induction of PDC1 gene encoding pyruvate decarboxylase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12275-008-0053-y | DOI Listing |
Front Nutr
December 2024
State Key Laboratory of Functions and Applications of Medicinal Plants and School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China.
Background: Tratt pomace (RRTP) contains valuable components like polyphenols and polysaccharides, which have high utilization value. Fermentation is an effective technique for creating beneficial nutrients that can improve the taste, appearance, and nutritional benefits of foods. Nevertheless, there is a lack of research on the alterations in chemical composition of RRTP during fermentation.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
Nutrient sensors allow cells to adapt their metabolisms to match nutrient availability by regulating metabolic pathway expression. Many such sensors are cytosolic receptors that measure intracellular nutrient concentrations. One might expect that inducing the metabolic pathway that degrades a nutrient would reduce intracellular nutrient levels, destabilizing induction.
View Article and Find Full Text PDFHeliyon
December 2024
Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), 38010, Santa Cruz de Tenerife, Spain.
The naphthoquinone moiety is commonly found in numerous natural cytotoxic compounds with diverse and pleiotropic modes of action (MOAs). The moiety can exist as a standalone pharmacophore or combined with other pharmacophores to enrich their MOAs. Here, we report that the synthetic fusion of naphthoquinones and oxazepines provides potent cytotoxic compounds with diverse MOAs.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
Under semi-open brewing conditions, traditional often suffers from unstable flavor quality, including occasional delayed bitterness. To address this issue, a yeast strain, SC-6, was screened for its ability to reduce delayed bitterness. The effects of SC-6 on the flavor and microbial composition of exhibiting high levels of delayed bitterness were also investigated.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China.
Grape maturity and yeast strains are crucial to determining young wine quality. This study evaluates the impact of three grape maturity levels with sugar contents of 22, 25, and 28°Brix combined with two strains selected from distinct terroirs on the Cabernet Sauvignon wine profile in the Ningxia Qingtongxia region in China. Physicochemical parameters and volatile aroma compounds were analyzed and quantitative descriptive analysis was performed on wine samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!