Background: Dietary polyphenols have been reported to have a variety of biological actions, including anticarcinogenic and antioxidant activities.
Aim Of The Study: In the present study we investigated the protective effect of dietary polyphenols against N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR) and benzo(a)pyrene (BaP)-induced DNA damage (strand breaks and oxidized purines/pyrimidines) in HepG2 cells.
Methods: Human hepatocellular carcinoma (HepG2) cells, which retain many specialized liver functions and drug metabolizing enzyme activities, were used as in vitro model for human hepatocytes. NDMA, NPYR and BaP were employed to induce DNA damage. DNA damage (strand breaks, oxidized pyrimidines and oxidized purines) was evaluated by the alkaline single cell gel electrophoresis or comet assay.
Results: None of the polyphenols concentrations tested in presence or absence of Fpg (formamidopyrimidine-DNA glycosylase), or Endo III (Endonuclease III) caused DNA damage per se. Increasing concentrations of BaP (25-100 microM) induced a significant increase of DNA strand breaks, Fpg and Endo III sensitive sites in a dose dependent manner. Myricetin and quercetin decreased DNA strand breaks and oxidized pyrimidines induced by NDMA, but not oxidized purines. However, both flavonoids reduced oxidized pyrimidines and purines induced by NPYR. DNA strand breaks induced by NPYR were prevented by quercetin, but not by myricetin. BaP-induced DNA strand breaks and oxidized pyrimidines were strongly reduced by myricetin and quercetin, respectively. While oxidized purines induced by BaP were reduced by quercetin, myricetin had no protective effect. (+)-Catechin and (-)-epicatechin reduced DNA strand breaks, oxidized pyrimidines and oxidized purines induced by NDMA. DNA strand breaks, and oxidized purines induced by NPYR were also prevented by (+)-catechin and (-)-epicatechin, while the maximum reduction of oxidized pyrimidines was found by (+)-catechin and (-)-epicatechin at 10 microM. (+)-Catechin and (-)-epicatechin decreased also DNA strand breaks and oxidized pyrimidines but not oxidized purines induced by BaP.
Conclusions: Our results clearly indicate that polyphenols protect human derived cells against DNA strand breaks and oxidative DNA damage effects of NDMA, NPYR or BaP, three carcinogenic compounds which occur in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00394-008-0751-6 | DOI Listing |
Molecules
December 2024
Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
Studies on radiosensitization of biological damage by O began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (G (O)) and 1.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany.
Despite treatment, prostate cancer commonly progresses into castration-resistant prostate cancer (CRPC), which remains largely incurable, requiring the development of new interventions. Darolutamide is an orally administered second-generation androgen receptor inhibitor indicated for patients with non-metastatic CRPC or metastatic hormone-sensitive prostate cancer. Here, we evaluated the effect of androgen receptor (AR) inhibition by darolutamide in combination with DNA double-strand-break-inducing targeted radium-223 alpha therapy in vitro and in an intratibial LNCaP xenograft model mimicking prostate cancer metastasized to bone.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
DNA repair involves various intricate pathways that work together to maintain genome integrity. XPF (ERCC4) is a structural endonuclease that forms a heterodimer with ERCC1 that is critical in both single-strand break repair (SSBR) and double-strand break repair (DSBR). Although the mechanistic function of ERCC1/XPF has been established in nucleotide excision repair (NER), its role in long-patch base excision repair (BER) has recently been discovered through the 5'-Gap pathway.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy.
Increased expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) often correlates with tumor aggressiveness and drug resistance in cancer. We have recently reported that BCAT1 was overexpressed in a subgroup of T-cell acute lymphoblastic (T-ALL) samples, especially those with NOTCH1 activating mutations. Interestingly, BCAT1-depleted cells showed pronounced sensitivity to DNA-damaging agents such as etoposide; however, how BCAT1 regulates this sensitivity remains uncertain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!