Genome-wide associations have shown a lot of promise in dissecting the genetics of complex traits in humans with single variants, yet a large fraction of the genetic effects is still unaccounted for. Analyzing genetic interactions between variants (epistasis) is one of the potential ways forward. We investigated the abundance and functional impact of a specific type of epistasis, namely the interaction between regulatory and protein-coding variants. Using genotype and gene expression data from the 210 unrelated individuals of the original four HapMap populations, we have explored the combined effects of regulatory and protein-coding single nucleotide polymorphisms (SNPs). We predict that about 18% (1,502 out of 8,233 nsSNPs) of protein-coding variants are differentially expressed among individuals and demonstrate that regulatory variants can modify the functional effect of a coding variant in cis. Furthermore, we show that such interactions in cis can affect the expression of downstream targets of the gene containing the protein-coding SNP. In this way, a cis interaction between regulatory and protein-coding variants has a trans impact on gene expression. Given the abundance of both types of variants in human populations, we propose that joint consideration of regulatory and protein-coding variants may reveal additional genetic effects underlying complex traits and disease and may shed light on causes of differential penetrance of known disease variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570624 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000244 | DOI Listing |
Cancer Cell Int
December 2024
Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer.
View Article and Find Full Text PDFMol Biotechnol
December 2024
Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.
The development of genome technology has opened new possibilities for comparative primate genomics. Non-human primates share approximately 98% genome similarity and provides vital information into the genetic similarities and variances among species utilized as disease models. DNA study links unique genetic variations to common facial attributes such as nose and eyes.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada. Electronic address:
There is growing scientific and regulatory interest in transcriptomic points of departure (tPOD) values from high-throughput in vitro experiments. To further help democratize tPOD research, here we outline 'TPD-seq' which links microplate-based exposure methods involving cell lines for human (Caco-2, Hep G2) and environmental (rainbow trout RTgill-W1) health, with a commercially available RNA-seq kit, with a cloud-based bioinformatics tool (ExpressAnalyst.ca).
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India.
High-throughput sequencing technologies and innovative bioinformatics tools discovered that most of the genome is transcribed into RNA. However, only a fraction of the RNAs in cell translates into proteins, while the majority of them are categorized as noncoding RNAs (ncRNAs). The ncRNAs with more than 200 nt without protein-coding ability are termed long noncoding RNAs (lncRNAs).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute for Agricultural and Food Technology, Universitat de Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
Plant diseases diminish crop yields and put the world's food supply at risk. Plant elicitor peptides (Peps) are innate danger signals inducing defense responses both naturally and after external application onto plants. Pep-triggered defense networks are compatible with pattern-triggered immunity (PTI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!