Background: Becker muscular dystrophy (BMD) is caused by mutations in the dystrophin gene with variable phenotypes. Becker muscular dystrophy patients have low levels of nearly full-length dystrophin and carry in-frame mutations, which allow partial functioning of the protein.

Aim: To study the deletion patterns of BMD and to correlate the same with reading frame rule and different phenotypes.

Setting: A tertiary care teaching hospital.

Design: This is a prospective hospital-based study.

Materials And Methods: Thirty-two exons spanning different "hot spot" regions using Multiplex PCR techniques were studied in 347 patients. Two hundred and twenty-two showed deletions in one or more of the 32 exons. Out of these, 46 diagnosed as BMD patients were analyzed.

Results: Forty-six BMD patients showed deletions in both regions of the dystrophin gene. Out of these 89.1% (41/46) were in-frame deletions. Deletions starting with Exon 45 were found in 76.1% (35/46) of the cases. Mutations in the majority of cases i.e. 39/46 (84.8%) were seen in 3' downstream region (Exon 45-55, distal rod domain). Few, i.e. 5/46 (10.8%) showed deletions in 5' upstream region (Exons 3-20, N-terminus and proximal rod domain) of the gene, while in 2/46 (4.4%) large mutations (>40 bp) spanning both regions (Exons 3-55) were detected.

Conclusion: This significant gene deletion analysis has been carried out for BMD patients particularly from Western India using 32 exons.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.40961DOI Listing

Publication Analysis

Top Keywords

becker muscular
12
muscular dystrophy
12
dystrophin gene
12
bmd patients
12
gene deletion
8
deletion patterns
8
rod domain
8
patients
6
gene
5
bmd
5

Similar Publications

Muscular dystrophies (MD) are a group of hereditary diseases marked by progressive muscle loss, leading to weakness and degeneration of skeletal muscles. These conditions often result from structural defects in the Dystrophin-Glycoprotein Complex (DGC), as seen in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Since MDs currently have no cure, research has focused on identifying potential therapeutic targets to improve patients' quality of life.

View Article and Find Full Text PDF

AI-Powered Neurogenetics: Supporting Patient's Evaluation with Chatbot.

Genes (Basel)

December 2024

Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.

Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.

Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy type 1 (FSHD1) and Becker muscular dystrophy (BMD) are distinct disorders caused by different genetic variations and exhibiting different inheritance patterns. The co-occurrence of both conditions within the same family is rare. In this case report, the proband was a 10 year-old boy who presented with eye and mouth orbicular muscles, shoulder and proximal upper and lower limbs weakness.

View Article and Find Full Text PDF

Objective: The staircase phenomenon, which refers to the increases in the force of contraction with repetitive stimulation of the muscle, has been studied for many years, but the method is difficult and not widely used. Our objective was to evaluate the staircase phenomenon in skeletal muscle using a piezoelectric sensor.

Methods: Thirty-five subjects without neuromuscular diseases (normal controls), 11 patients with Becker muscular dystrophy (BMD), and 19 patients with myotonic dystrophy type 1 (MyD) were studied.

View Article and Find Full Text PDF

For individuals with Duchenne or Becker muscular dystrophy (DMD and BMD, respectively), transitioning to adulthood presents significant challenges. Although considerable attention has been given to facilitating medical transitions due to the complexity of these conditions, less focus has been placed on other aspects of the transition, such as achieving independence. This study assessed the transition needs of people with DMD or BMD, exploring various domains including health, education, employment, living arrangements, transportation, daily activities, and independent personal life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!