Aneuploidy, an incorrect number of chromosomes, is the leading cause of miscarriages and mental retardation in humans and is a hallmark of cancer. We examined the effects of aneuploidy on primary mouse cells by generating a series of cell lines that carry an extra copy of one of four mouse chromosomes. In all four trisomic lines, proliferation was impaired and metabolic properties were altered. Immortalization, the acquisition of the ability to proliferate indefinitely, was also affected by the presence of an additional copy of certain chromosomes. Our data indicate that aneuploidy decreases not only organismal but also cellular fitness and elicits traits that are shared between different aneuploid cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701511PMC
http://dx.doi.org/10.1126/science.1160058DOI Listing

Publication Analysis

Top Keywords

aneuploidy
4
aneuploidy proliferation
4
proliferation spontaneous
4
spontaneous immortalization
4
immortalization mammalian
4
mammalian cells
4
cells aneuploidy
4
aneuploidy incorrect
4
incorrect number
4
number chromosomes
4

Similar Publications

Analysis of Cellular DNA Content in Pleural Effusion by Flow Cytometry During Lung Cancer Progression: A Case Report.

Cureus

December 2024

Department of Cancer Biochemistry and Radiobiology, Institutul Oncologic Prof. Dr. Alexandru Trestioreanu, Bucharest, ROU.

Malignant pleural effusion (MPE) is a common feature in patients with advanced or metastatic malignancies. While significant progress has been made in understanding the biology of pleural effusions, further research is needed to uncover the subsequent behavior of tumor cells following their invasion into the pleural space. This report utilizes flow cytometry to analyze DNA content abnormalities (aneuploidy) and cell cycle status, shedding light on the tumor cell populations present in MPE samples from a patient with lung adenocarcinoma during treatment.

View Article and Find Full Text PDF

High CDC20 levels increase sensitivity of cancer cells to MPS1 inhibitors.

EMBO Rep

January 2025

Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Spindle assembly checkpoint (SAC) inhibitors are a recently developed class of drugs, which perturb chromosome segregation during cell division, induce chromosomal instability (CIN), and eventually lead to cell death. The molecular features that determine cellular sensitivity to these drugs are not fully understood. We recently reported that aneuploid cancer cells are preferentially sensitive to SAC inhibition.

View Article and Find Full Text PDF

To explore the genetic cause of a four-generation severe intellectual disability in a Chinese family using nanopore sequencing and to provide genetic counseling and reproductive guidance for family members. Multiple genetic analyses of the proband and family members were performed, including chromosome karyotype analysis, whole exome sequencing, nanopore sequencing, PCR amplification, and Sanger sequencing. The results of G-binding karyotyping, CGG repeats for FMR1, GGC repeats for NOTCH2NCL, and trio-whole-exome sequencing were negative for the proband and his parents.

View Article and Find Full Text PDF

To evaluate the value of increasing sequencing depths of non-invasive prenatal testing (NIPT) for fetal chromosomal aneuploidies based on the semiconductor sequencing platform. This study recruited a cohort of 59,800 singleton pregnancies from Guangdong Women and Children Hospital between January 2015 and December 2020, including 48,018 cases of NIPT and 11,782 cases of expanded NIPT. Cell-free DNA from plasma samples was sequenced at a sequencing depth of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!