EcoCyc (http://EcoCyc.org) provides a comprehensive encyclopedia of Escherichia coli biology. EcoCyc integrates information about the genome, genes and gene products; the metabolic network; and the regulatory network of E. coli. Recent EcoCyc developments include a new initiative to represent and curate all types of E. coli regulatory processes such as attenuation and regulation by small RNAs. EcoCyc has started to curate Gene Ontology (GO) terms for E. coli and has made a dataset of E. coli GO terms available through the GO Web site. The curation and visualization of electron transfer processes has been significantly improved. Other software and Web site enhancements include the addition of tracks to the EcoCyc genome browser, in particular a type of track designed for the display of ChIP-chip datasets, and the development of a comparative genome browser. A new Genome Omics Viewer enables users to paint omics datasets onto the full E. coli genome for analysis. A new advanced query page guides users in interactively constructing complex database queries against EcoCyc. A Macintosh version of EcoCyc is now available. A series of Webinars is available to instruct users in the use of EcoCyc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686493 | PMC |
http://dx.doi.org/10.1093/nar/gkn751 | DOI Listing |
Nucleic Acids Res
November 2024
Bioinformatics Research Group, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025 USA.
The model organism Escherichia coli K-12 has one of the most extensively annotated genomes in terms of functional characterization, yet a significant number of genes, ∼35%, are still considered poorly characterized. Initially genes without known functional understanding were given 'y' gene names. However, due to inconsistency in changing 'y' names to non-'y' names over the years, gene name alone does not provide sufficient information as to the characterization level of genes.
View Article and Find Full Text PDFMicroorganisms
June 2023
Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico.
is the best-known model for the biotechnological production of many biotechnological products, including housekeeping and heterologous primary and secondary metabolites and recombinant proteins, and is an efficient biofactory model to produce biofuels to nanomaterials. Glucose is the primary substrate used as the carbon source for laboratory and industrial cultivation of for production purposes. Efficient growth and associated production and yield of desired products depend on the efficient sugar transport capabilities, sugar catabolism through the central carbon catabolism, and the efficient carbon flux through specific biosynthetic pathways.
View Article and Find Full Text PDFEcoSal Plus
December 2023
School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of .
View Article and Find Full Text PDFPost-genomic implementations have expanded the experimental strategies to identify elements involved in the regulation of transcription initiation. As new methodologies emerge, a natural step is to compare their results with those from established methodologies, such as the classic methods of molecular biology used to characterize transcription factor binding sites, promoters, or transcription units. In the case of K-12, the best-studied microorganism, for the last 30 years we have continuously gathered such knowledge from original scientific publications, and have organized it in two databases, RegulonDB and EcoCyc.
View Article and Find Full Text PDFMicrobiol Spectr
February 2023
State Key Laboratory of Microbial Technology, Microbial Technology Research Institute, Shandong University, Qingdao, China.
The use of antibiotics leads to strong stresses to bacteria, leading to profound impact on cellular physiology. Elucidating how bacteria respond to antibiotic stresses not only helps us to decipher bacteria's strategies to resistant antibiotics but also assists in proposing targets for antibiotic development. In this work, a comprehensive comparative transcriptomic analysis on how Escherichia coli responds to nine representative classes of antibiotics (tetracycline, mitomycin C, imipenem, ceftazidime, kanamycin, ciprofloxacin, polymyxin E, erythromycin, and chloramphenicol) was performed, aimed at determining and comparing the responses of this model organism to antibiotics at the transcriptional level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!