AI Article Synopsis

  • The NDH complex in chloroplasts is essential for photosystem I cyclic electron transfer and helps plants cope with environmental stress.
  • Researchers identified two nuclear-encoded proteins, NDH48 and NDH45, that are closely associated with the NDH complex in higher plants.
  • Mutations affecting either NDH45 or NDH48 result in significant issues with NDH complex stability and function, highlighting their importance in maintaining the integrity of this complex.

Article Abstract

The NAD(P)H dehydrogenase (NDH) complex functions in photosystem I cyclic electron transfer in higher plant chloroplasts and is crucial for plant responses to environmental stress. Chloroplast NDH complex is a close relative to cyanobacterial NDH-1L complex, and all fifteen subunits so far identified in NDH-1L have homologs in the chloroplast NDH complex. Here we report on the identification of two nuclear-encoded proteins NDH48 and NDH45 in higher plant chloroplasts and show their intimate association with the NDH complex. These two membrane proteins are shown to interact with each other and with the NDH complex enriched in stroma thylakoids. Moreover, the deficiency of either the NDH45 protein or the NDH48 protein in respective mutant plants leads to severe defects in both the accumulation and the function of the NDH complex. The NDH48 and NDH45 proteins are not components of the hydrophilic connecting domain of the NDH complex but are strongly attached to the hydrophobic membrane domain. We conclude that NDH48 and NDH45 are novel nuclear-encoded subunits of the chloroplast NDH complex and crucial both for the stable structure and function of the NDH complex.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M805404200DOI Listing

Publication Analysis

Top Keywords

ndh complex
36
chloroplast ndh
12
ndh48 ndh45
12
complex
11
ndh
9
novel nuclear-encoded
8
nuclear-encoded subunits
8
subunits chloroplast
8
nadph dehydrogenase
8
higher plant
8

Similar Publications

The nicotinamide adenine dinucleotide phosphate (NADPH) dehydrogenase (NDH) complex is crucial for photosynthetic cyclic electron flow and respiration, transferring electrons from ferredoxin to plastoquinone while transporting H across the chloroplast membrane. This process boosts adenosine triphosphate production, regardless of NADPH levels. In flowering plants, NDH forms a supercomplex with photosystem I, enhancing its stability under high light.

View Article and Find Full Text PDF

Mitochondria from harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed.

View Article and Find Full Text PDF

The sustainability of maize cultivation would benefit tremendously from early sowing, but is hampered by low temperatures during early development in temperate climates. We show that allelic variation within the gene encoding subunit M of the NADH-dehydrogenase-like (NDH) complex (ndhm1) in a European maize landrace affects several quantitative traits that are relevant during early development in cold climates through NDH-mediated cyclic electron transport around photosystem I, a process crucial for photosynthesis and photoprotection. Beginning with a genome-wide association study for maximum potential quantum yield of photosystem II in dark-adapted leaves (Fv/Fm), we capitalized on the large phenotypic effects of a hAT transposon insertion in ndhm1 on multiple quantitative traits (early plant height [EPH], Fv/Fm, chlorophyll content, and cold tolerance) caused by the reduced protein levels of NDHM and associated NDH components.

View Article and Find Full Text PDF

Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy.

Biochim Biophys Acta Bioenerg

November 2024

Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine. Electronic address:

Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone.

View Article and Find Full Text PDF

Modulating Liposome Surface Charge for Maximized ATP Regeneration in Synthetic Nanovesicles.

ACS Synth Biol

December 2024

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland.

Article Synopsis
  • In vitro reconstructed minimal respiratory chains are used to study how enzyme components interact within their environment, particularly focusing on the coreconstitution of cytochrome oxidase and ATP synthase in liposomes.
  • The study explores using natural long-chain ubiquinone and various electron donors like succinate or NADH, while revealing that negatively charged lipids are necessary for effective enzyme activity but also reduce ATP synthesis rates.
  • To optimize enzyme orientation and ATP production, researchers utilize ionizable lipids that can switch charges based on pH, successfully enhancing ATP synthesis rates by aligning cytochrome oxidase for better function with NDH-2.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!