We investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities. Fibroblast analysis showed poor incorporation of biotin into the carboxylases, and low transfer of biotin by the holocarboxylase synthetase enzyme. Kinetic studies identified an increased Km but a preserved Vmax. Mutation analysis showed the child to be a compound heterozygote for a new nonsense mutation Q379X and for a novel missense mutation Y663H. This mutation affects a conserved amino acid, which is located the most 3' of all recorded missense mutations thus far described, and extends the region of functional biotin interaction. Treatment with biotin 100mg/day gradually improved the biochemical abnormalities in blood and in cerebrospinal fluid (CSF), corrected the carboxylase enzyme activities, and provided clinical stability and a normal neurodevelopmental outcome. Plasma concentrations of biotin were increased to more than 500 nM, thus exceeding the increased Km of the mutant enzyme. At these pharmacological concentrations, the CSF biotin concentration was half the concentration in blood. Measuring these pharmacokinetic variables can aid in optimizing treatment, as individual tailoring of dosing to the needs of the mutation may be required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630166 | PMC |
http://dx.doi.org/10.1016/j.ymgme.2008.09.006 | DOI Listing |
Front Genet
November 2024
Department of Endocrinology, Genetics and Metabolism, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
Introduction: Holocarboxylase synthetase deficiency (HLCSD) is a rare autosomal recessive genetic disorder caused by mutations in the holocarboxylase synthetase (HLCS) gene, which affects multiple systems. Common clinical manifestations include metabolic acidosis, rash, feeding difficulties, and growth retardation, with predominant involvement of the nervous system, skin, and hair. However, respiratory symptoms as the initial manifestation are relatively rare.
View Article and Find Full Text PDFChemMedChem
December 2024
Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
Cyclodextrin dimers have been investigated as potential nanocapsules of biomolecules. The presence of two cavities can improve the stability of inclusion complexes, working as a hydrophilic sandwich of poorly water-soluble species. Here, we designed new β- and γ-cyclodextrin dimers functionalized with biotin as a targeting unit and tested the new bioconjugates as doxorubicin delivery systems in cancer cells.
View Article and Find Full Text PDFMol Genet Genomic Med
August 2024
Department of Pediatrics, Seoul National University Children's Hospital, Seoul, South Korea.
Introduction: Holocarboxylase synthetase deficiency (HLCS deficiency, OMIM #253270) is an exceedingly rare metabolic disorder resulting in multiple carboxylase deficiencies owing to impaired biotin cycle. Clinical manifestations include severe metabolic acidosis, hyperammonemia, tachypnea, skin rash, alopecia, feeding problems, hypotonia, developmental delay, seizures, and, in severe cases, death.
Methods And Results: An 8-day-old female neonate presented with severe lactic acidosis, necessitating sedation and mechanical ventilation.
Int J Mol Sci
June 2024
Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research "Demokritos", P.O. Box 60037, 153 10 Agia Paraskevi, Greece.
Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation.
View Article and Find Full Text PDFClin Chim Acta
June 2024
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Children's Health System, Dallas, TX, United States. Electronic address:
Context: Elevated 3-hydroxyisovaleryl-/2-methyl-3-hydroxybutyryl (C5-OH) acylcarnitine in blood can result from several genetic enzyme deficiencies: 3-methylcrotonyl CoA carboxylase deficiency, 3-hydroxy 3-methylglutaryl-CoA lyase deficiency, beta-ketothiolase deficiency, 2-methyl 3-hydroxybutyryl-CoA dehydrogenase deficiency, primary 3-methylglutaconic aciduria, multiple biotin-dependent carboxylase deficiencies and biotin metabolism disorders. Biochemical tests help differentiate these causes while molecular tests are usually required for definitive diagnosis.
Case Description: We reported an infant girl with newborn screen findings of elevated C5-OH acylcarnitine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!