Carbon analogs of antifungal dioxane-triazole derivatives: synthesis and in vitro activities.

Bioorg Med Chem Lett

Medicinal Chemistry Research Laboratories II, Daiichi Sankyo Co., Ltd, 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.

Published: December 2008

A new series of triazole compounds possessing a carbon atom in place of a sulfur atom were efficiently synthesized and their in vitro antifungal activities were investigated. The carbon analogs showed excellent in vitro activity against Candida, Cryptococcus, and Aspergillus species. The MICs of compound 1c against C. albicans ATCC24433, C. neoformans TIMM1855, and A. fumigatus ATCC26430 were 0.016, 0.016, and 0.125 microg/mL, respectively (MICs of fluconazole: 0.5, >4, and >4 microg/mL; MICs of itraconazole: 0.125, 0.25, and 0.25 microg/mL).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2008.10.055DOI Listing

Publication Analysis

Top Keywords

carbon analogs
8
microg/ml mics
8
analogs antifungal
4
antifungal dioxane-triazole
4
dioxane-triazole derivatives
4
derivatives synthesis
4
synthesis vitro
4
vitro activities
4
activities series
4
series triazole
4

Similar Publications

Enhancing the Optically Detected Magnetic Resonance Signal of Organic Molecular Qubits.

ACS Cent Sci

January 2025

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

In quantum information science and sensing, electron spins are often purified into a specific polarization through an optical-spin interface, a process known as optically detected magnetic resonance (ODMR). Diamond-NV centers and transition metals are both excellent platforms for these so-called color centers, while metal-free molecular analogues are also gaining popularity for their extended polarization lifetimes, milder environmental impacts, and reduced costs. In our earlier attempt at designing such organic high-spin π-diradicals, we proposed to spin-polarize by shelving triplet = ±1 populations as singlets.

View Article and Find Full Text PDF

5-Hydroxyindoleacetic acid (5-HIAA), a vital metabolite of serotonin (5-HT), is crucial for understanding metabolic pathways and is implicated in various mental disorders. In situ monitoring of 5-HIAA is challenging due to the lack of affinity ligands and issues with electrochemical fouling. We present an advanced sensing approach that integrates customizable molecular imprinting polymer (MIP) with self-driven galvanic redox potentiometry (GRP) for precise, real-time in vivo monitoring of 5-HIAA.

View Article and Find Full Text PDF

Epigallocatechin gallate (EGCg), an abundant phytochemical in green tea, is an antioxidant that also binds proteins and complex metals. After gastrointestinal absorption, EGCg binds to serum albumin in the hydrophobic pocket between domains IIA and IIIA and overlaps with the Sudlow I site. Serum albumin also has two metal binding sites, a high-affinity N-terminal site (NTS) site that selectively binds Cu(II), and a low-affinity, less selective multi-metal binding site (MBS).

View Article and Find Full Text PDF

The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.

View Article and Find Full Text PDF

Introduction: This article describes the invention of graphene oxide (GO) or reduced graphene oxide (rGO) functionalised with 2-methoxy estradiol. The presence of polar hydroxyl groups enables the binding of 2-ME to GO/rGO through hydrogen bonds with epoxy and hydroxyl groups located on the surface and carbonyl and carboxyl groups located at the edges of graphene flake sheets.

Methods: The patented method of producing the subject of the invention and the research results regarding its anticancer effectiveness via cytotoxicity in an in vivo model (against A375 melanoma and 143B osteosarcoma cells) are described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!