Background: DNA-bound transcription factors recruit an array of coregulatory proteins that influence gene expression. We previously demonstrated that DNA functions as an allosteric modulator of estrogen receptor alpha (ERalpha) conformation, alters the recruitment of regulatory proteins, and influences estrogen-responsive gene expression and reasoned that it would be useful to develop a method of isolating proteins associated with the DNA-bound ERalpha using full-length receptor and endogenously-expressed nuclear proteins.

Results: We have developed a novel approach to isolate large complexes of proteins associated with the DNA-bound ERalpha. Purified ERalpha and HeLa nuclear extracts were combined with oligos containing ERalpha binding sites and fractionated on agarose gels. The protein-DNA complexes were isolated and mass spectrometry analysis was used to identify proteins associated with the DNA-bound receptor. Rather than simply identifying individual proteins that interact with ERalpha, we identified interconnected networks of proteins with a variety of enzymatic and catalytic activities that interact not only with ERalpha, but also with each other. Characterization of a number of these proteins has demonstrated that, in addition to their previously identified functions, they also influence ERalpha activity and expression of estrogen-responsive genes.

Conclusion: The agarose gel fractionation method we have developed would be useful in identifying proteins that interact with DNA-bound transcription factors and should be easily adapted for use with a variety of cultured cell lines, DNA sequences, and transcription factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585101PMC
http://dx.doi.org/10.1186/1471-2199-9-97DOI Listing

Publication Analysis

Top Keywords

associated dna-bound
16
transcription factors
12
proteins associated
12
proteins
9
estrogen receptor
8
receptor alpha
8
dna-bound transcription
8
gene expression
8
eralpha
8
dna-bound eralpha
8

Similar Publications

Transcription activators trigger transcript production by RNA Polymerase II (RNApII) via the Mediator coactivator complex. Here the dynamics of activator, Mediator, and RNApII binding at promoter DNA were analyzed using multi-wavelength single-molecule microscopy of fluorescently labeled proteins in budding yeast nuclear extract. Binding of Mediator and RNApII to the template required activator and an upstream activator sequence (UAS), but not a core promoter.

View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common malignant brain tumour in children. The Sonic Hedgehog (SHH)-medulloblastoma subtype arises from the cerebellar granule neuron lineage. Terminally differentiated neurons are incapable of undergoing further cell division, so an effective treatment for this tumour could be to force neuronal differentiation.

View Article and Find Full Text PDF

Probing Electrostatic Interactions in DNA-Bound CRISPR/Cas9 Complexes by Molecular Dynamics Simulations.

ACS Omega

November 2024

Departments of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, California 90089, United States.

Engineered protein mutations may be exploited to tune molecular interactions in the cellular environment. Here, we have explored the structural consequences of different Cas9 mutations in genome-editing CRISPR/Cas9 systems by means of Molecular Dynamics simulations. We have characterized mutation-induced structural changes and their implications for changes in protein-DNA, DNA-RNA, and DNA-DNA interactions.

View Article and Find Full Text PDF

ChIPmentation for Epigenomic Analysis in Fission Yeast.

Methods Mol Biol

November 2024

Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.

Histone modifications and transcription factor-DNA interactions regulate vital processes such as transcription, recombination, repair, and accurate chromosome segregation. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) has been instrumental in studying genome-wide distribution of DNA-bound or chromatin-associated factors and histone posttranslational modifications (PTMs). Here, we describe a ChIPmentation protocol adapted for fission yeast, Schizosaccharomyces pombe.

View Article and Find Full Text PDF

Automated live-cell single-molecule tracking in enteroid monolayers reveals transcription factor dynamics probing lineage-determining function.

Cell Rep

November 2024

Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, California Institute for Regenerative Medicine (CIRM) Center of Excellence, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:

Lineage transcription factors (TFs) provide one regulatory level of differentiation crucial for the generation and maintenance of healthy tissues. To probe TF function by measuring their dynamics during adult intestinal homeostasis, we established HILO-illumination-based live-cell single-molecule tracking (SMT) in mouse small intestinal enteroid monolayers recapitulating tissue differentiation hierarchies in vitro. To increase the throughput, capture cellular features, and correlate morphological characteristics with diffusion parameters, we developed an automated imaging and analysis pipeline, broadly applicable to two-dimensional culture systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!