In endocrine cells, prohormones and granins are segregated in the TGN (trans-Golgi network) from constitutively secreted proteins, stored in concentrated form in dense-core secretory granules, and released in a regulated manner on specific stimulation. The mechanism of granule formation is only partially understood. Expression of regulated secretory proteins, both peptide hormone precursors and granins, had been found to be sufficient to generate structures that resemble secretory granules in the background of constitutively secreting, non-endocrine cells. To identify which segment of CgA (chromogranin A) is important to induce the formation of such granule-like structures, a series of deletion constructs fused to either GFP (green fluorescent protein) or a short epitope tag was expressed in COS-1 fibroblast cells and analysed by fluorescence and electron microscopy and pulse-chase labelling. Full-length CgA as well as deletion constructs containing the N-terminal 77 residues generated granule-like structures in the cell periphery that co-localized with co-expressed SgII (secretogranin II). These are essentially the same segments of the protein that were previously shown to be required for granule sorting in wild-type PC12 (pheochromocytoma cells) cells and for rescuing a regulated secretory pathway in A35C cells, a variant PC12 line deficient in granule formation. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20071382 | DOI Listing |
Brain Res
December 2024
Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ) and leading to cellular senescence and cognitive deficits. Cellular senescence contributes significantly to the pathogenesis of AD through the senescence-associated secretory phenotype (SASP), exacerbating Aβ deposition. This study investigates the protective effects of 3-N-Butylphthalide (NBP), a compound derived from Apium graveolens Linn (Chinese celery), on Aβ-induced cellular senescence in U87 cells.
View Article and Find Full Text PDFClin Mol Hepatol
December 2024
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Backgrounds/aims: Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed in and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods: TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry.
Front Vet Sci
December 2024
Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Science, Olsztyn, Poland.
Introduction: Prostaglandins (PG) are important regulators of the myometrial contractility in mammals. Endometrosis, a condition characterized by morphological changes in the equine endometrium, also affects endometrial secretory function. However, it remains unclear whether and how endometrosis affects myometrial function.
View Article and Find Full Text PDFVaccine
December 2024
Infectious Disease Immunology, Center for Vaccine Research, SSI, Copenhagen, Denmark. Electronic address:
Mucosal secretory IgA (SIgA) produced by subepithelial plasma cells in the lamina propria is the major antigen-specific defense mechanism against mucosal infections. We investigated if a retinoic acid (RA)-containing adjuvant in parenteral immunization, can induce vaccine-specific SIgA in the jejunal lumen in a dose-dependent manner in neonatal pigs immunized with a Chlamydia hybrid antigen. To accurately quantify SIgA responses in mucosal secretions, an antigen-specific ELISA method with secondary detection of porcine secretory component rather than IgA was developed.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan Str., Yerevan, 0014, Armenia.
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!