Study of the self-assembling of n-octylphosphonic acid layers on aluminum oxide.

Langmuir

Department ofMetallurgy, Electrochemistry and Materials Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.

Published: December 2008

The deposition of n-octylphosphonic acid on aluminum oxide was studied. The substrate was pretreated in order to achieve a root-mean-square roughness of <1 nm, a hydroxyl fraction of 30%, and a thickness of approximately 170 nm. It was proven using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) that, rather than a monolayer, an organic multilayer was formed. The growth mechanism was identified as a Stranski-Krastanov one. It was also shown that the use of AFM, probing the surface topography, is essential for a reliable quantification and interpretation of data obtained with XPS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la801978aDOI Listing

Publication Analysis

Top Keywords

n-octylphosphonic acid
8
aluminum oxide
8
study self-assembling
4
self-assembling n-octylphosphonic
4
acid layers
4
layers aluminum
4
oxide deposition
4
deposition n-octylphosphonic
4
acid aluminum
4
oxide studied
4

Similar Publications

External Control of GaN Band Bending Using Phosphonate Self-Assembled Monolayers.

ACS Appl Mater Interfaces

January 2021

Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117 Berlin, Germany.

We report on the optoelectronic properties of GaN(0001) and (11̅00) surfaces after their functionalization with phosphonic acid derivatives. To analyze the possible correlation between the acid's electronegativity and the GaN surface band bending, two types of phosphonic acids, n-octylphosphonic acid (OPA) and 1,1,2,2-perfluorooctanephosphonic acid (PFOPA), are grafted on oxidized GaN(0001) and GaN(11̅00) layers as well as on GaN nanowires. The resulting hybrid inorganic/organic heterostructures are investigated by X-ray photoemission and photoluminescence spectroscopy.

View Article and Find Full Text PDF

We report an analysis method to identify conjugated ligands and their binding states on semiconductor nanocrystals based on their molecular information. Surface science techniques, such as time-of-flight secondary-ion mass spectrometry (ToF-SIMS) and FT-IR spectroscopy, are adopted based on the micro-aggregated sampling method. Typical trioctylphosphine oxide-based synthesis methods of CdSe/ZnS quantum dots (QDs) have been criticized because of the peculiar effects of impurities on the synthesis processes.

View Article and Find Full Text PDF

A simple and practical approach to improve the sensitivity of acetylcholinesterase (AChE)-inhibited method has been developed for monitoring organophosphorous (OP) pesticide residues. In this work, matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) was used to detect AChE activity. Due to its good salt-tolerance and low sample consumption, MALDI-FTMS facilitates rapid and high-throughput screening of OP pesticides.

View Article and Find Full Text PDF

Study of the self-assembling of n-octylphosphonic acid layers on aluminum oxide.

Langmuir

December 2008

Department ofMetallurgy, Electrochemistry and Materials Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.

The deposition of n-octylphosphonic acid on aluminum oxide was studied. The substrate was pretreated in order to achieve a root-mean-square roughness of <1 nm, a hydroxyl fraction of 30%, and a thickness of approximately 170 nm. It was proven using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) that, rather than a monolayer, an organic multilayer was formed.

View Article and Find Full Text PDF

Tri-n-octylphosphine oxide (TOPO) is a commonly used solvent for nanocrystal synthesis. Commercial TOPO samples contain varying amounts of phosphorus-containing impurities, some of which significantly influence nanocrystal growth. Consequently, nanocrystal syntheses often give irreproducible results with different batches of TOPO solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!