The delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) method allows for both qualitative and quantitative measurement of the spatial distribution of glycosaminoglycan [GAG] in excised cartilage. The objective of this study was to determine the effect of paraformaldehyde fixation on dGEMRIC measurements. Five bovine and seven human cartilage pieces were punched into 5-mm plugs, fixed for 18 h in 4% paraformaldehyde solution, and washed. The magnetic resonance imaging (MRI) parameter T1 was measured prior and post fixation in cartilage without (T1(0)) and with (T1(Gd)), the ionically charged MRI contrast agent Gd(DTPA)(2-). Images of tissue before and after fixation were qualitatively very similar. The ratios of T1(0), T1(Gd), and calculated [GAG] after fixation, relative to before fixation, were near or slightly higher than 1 for both bovine cartilage (1.01 +/- 0.01, 1.04 +/- 0.02, 1.05 +/- 0.03, respectively) and for human cartilage (0.96 +/- 0.11, 1.03 +/- 0.05, 1.09 +/- 0.13). Thus, these data suggest that dGEMRIC can be used on previously fixed samples to assess the three dimensional spatial distribution of GAG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3947557PMC
http://dx.doi.org/10.1002/jor.20767DOI Listing

Publication Analysis

Top Keywords

paraformaldehyde fixation
8
delayed gadolinium-enhanced
8
cartilage dgemric
8
magnetic resonance
8
resonance imaging
8
spatial distribution
8
human cartilage
8
t10 t1gd
8
cartilage
7
+/-
6

Similar Publications

Recommendations released by the CDC in 2023 address the need to demonstrate that the RNA genome of positive-strand RNA viruses is inactivated in addition to viral particles. This recommendation is in response to the similarities between host mRNA and the viral genome that allow the viral RNA to be used as a template by host replication mechanisms to produce infectious viruses; therefore, there is concern that through artificial introduction into host cells, active positive-strand RNA genomes can be utilized to produce infectious viruses out of a containment facility. Utilizing 10% formalin for 7 days or 2.

View Article and Find Full Text PDF

Identifying the composition of large vesicles in the cytoplasm of oocytes.

Reprod Fertil Dev

December 2024

Confocal Microscopy Unit, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand.

Context Oocyte vesicles, or vacuoles, have been described using transmission electron microscopy in most species. In sheep and cow oocytes, vesicles constitute up to 30% of the cytoplasm, their volume decreases during maturation and is lower in poorer quality oocytes, suggesting they are important for oocyte competence. However, the composition and function of these organelles is unknown.

View Article and Find Full Text PDF

Adipocytes derived from 3T3-L1 cells are a gold standard for analyses of adipogenesis processes and the metabolism of fat cells. A widely used histological and immunohistochemical staining and mass spectrometry lipidomics are mainly aimed for examining lipid droplets (LDs). Visualizing other cellular compartments contributing to the cellular machinery requires additional cell culturing for multiple labeling.

View Article and Find Full Text PDF

Ex vivo studies of the brain are often employed as experimental systems in neuroscience. In general, brains for ex vivo MRI studies are usually fixed with paraformaldehyde to preserve molecular structure and prevent tissue destruction during long-term storage. As a result, fixing brain tissue causes microstructural changes and a decrease in brain volume.

View Article and Find Full Text PDF

The optimization of sample preparation on zebrafish larvae in vibrational spectroscopy imaging.

Spectrochim Acta A Mol Biomol Spectrosc

February 2025

Independent Unit of Spectroscopy and Chemical Imaging, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland. Electronic address:

The zebrafish (Danio rerio) larvae are widely used in biomedical, pharmaceutical, and ecotoxicological studies. Their transparency and translational potential make them particularly valuable for fluorescence imaging. In addition to fluorescence imaging, microspectroscopy, which combines vibrational spectroscopy: Raman or Fourier transform infrared (FT-IR) with microscopy, allows the collection of spatially resolved, label-free information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!