An efficient and modulable total synthesis of discodermolide (DDM), a unique marine anticancer polyketide is described including related alternative synthetic approaches. Particularly notable is the repeated application of a crotyltitanation reaction to yield homoallylic (Z)-O-ene-carbamate alcohols with excellent selectivity. Advantage was taken of this reaction not only for the stereocontrolled building of the syn-anti methyl-hydroxy-methyl triads of DDM, but also for the direct construction of the terminal (Z)-diene. Of particular interest is also the installation of the C13=C14 (Z)-double bond through a highly selective dyotropic rearrangement. The preparation of the middle C8-C14 fragment in two sequential stages and its coupling to the C1-C7 moiety was a real challenge and required careful optimization. Several synthetic routes were explored to allow high and reliable yields. Due to the flexibility and robust character of this approach, it might enable a systematic structural variation of DDM and, therefore, the elaboration and exploration of novel discodermolide structural analogues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200801478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!