Terminal deoxynucleotidyl transferase (TdT), is a template-independent DNA polymerase that catalyzes the incorporation of deoxynucleotides at the 3'-hydroxyl terminus of DNA, accompanied by the release of inorganic phosphate. TdT does not require a template and will not copy one. Reaction conditions and some applications are described in this unit, including cloning DNA fragments, labeling the 3' terminus of DNA with (32)P or nonradioactive tags, synthesizing model polydeoxynucleotide homopolymers, and detecting DNA damage and apoptotic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471142727.mb0306s84 | DOI Listing |
A route to prepare ribonucleoside triphosphates featuring a 3'-aminoxy (3'-O-NH ) removable blocking group is reported here. We then show that versions of two DNA polymerases, human DNA polymerase theta (Polθ) and mimiviral PrimPol, accept these triphosphates as substrates to add single nucleotides to an RNA primer under engineered conditions. Cleaving the O-N bond in the 3'-O-NH group within the extended primer regenerates the 3'-OH group, facilitating subsequent polymerase cycles that add a second, selected, nucleotide.
View Article and Find Full Text PDFACS Synth Biol
October 2024
Department of Biomedical Engineering, University of California, Irvine, California 92697, United States.
Terminal deoxynucleotidyl transferase (TdT) is a unique DNA polymerase capable of template-independent extension of DNA. TdT's DNA synthesis ability has found utility in DNA recording, DNA data storage, oligonucleotide synthesis, and nucleic acid labeling, but TdT's intrinsic nucleotide biases limit its versatility in such applications. Here, we describe a multiplexed assay for profiling and engineering the bias and overall activity of TdT variants with high throughput.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.
Harnessing DNA as a high-density storage medium for information storage and molecular recording of signals has been of increasing interest in the biotechnology field. Recently, progress in enzymatic DNA synthesis, DNA digital data storage, and DNA-based molecular recording has been made by leveraging the activity of the template-independent DNA polymerase, terminal deoxynucleotidyl transferase (TdT). TdT adds deoxyribonucleotides to the 3' end of single-stranded DNA, generating random sequences of single-stranded DNA.
View Article and Find Full Text PDFBiomolecules
August 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia.
Human terminal deoxynucleotidyl transferase (TdT) can catalyze template-independent DNA synthesis during the V(D)J recombination and DNA repair through nonhomologous end joining. The capacity for template-independent random addition of nucleotides to single-stranded DNA makes this polymerase useful in various molecular biological applications involving sequential stepwise synthesis of oligonucleotides using modified dNTP. Nonetheless, a serious limitation to the applications of this enzyme is strong selectivity of human TdT toward dNTPs in the order dGTP > dTTP ≈ dATP > dCTP.
View Article and Find Full Text PDFNucleic Acids Res
September 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China.
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!