Inflow quantification in three-dimensional cardiovascular MR imaging.

J Magn Reson Imaging

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.

Published: November 2008

Purpose: To investigate blood inflow enhancement (or lack thereof) in three-dimensional (3D) cardiovascular MR for both single phase whole-heart and cine biventricular functions.

Materials And Methods: A 3D imaging sequence is proposed in which radiofrequency excitation gradient is changed without modifying image acquisition or phase/slice encoding. This imaging sequence enables direct inflow measurement while retaining static voxel signal-to-noise ratio. Inflow measurements were performed for both spoiled gradient-echo (GRE) imaging and balanced steady-state free precession (SSFP) in 18 healthy subjects.

Results: For single phase imaging, increasing slab thickness from 3 to 10 cm lead to 73% and 59% reductions in contrast-to-noise ratio (CNR) with GRE and SSFP, respectively. For cine acquisitions, systolic CNR was reduced by 85% and 50% for the GRE and SSFP acquisitions, respectively, while diastolic CNR was reduced by 64% and 42%.

Conclusion: There is significant loss of CNR between blood and myocardium when using larger 3D slabs due to saturation of inflowing spins. The loss of contrast is less pronounced for SSFP than for GRE, though both acquisition techniques suffer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmri.21493DOI Listing

Publication Analysis

Top Keywords

three-dimensional cardiovascular
8
single phase
8
imaging sequence
8
gre ssfp
8
cnr reduced
8
imaging
5
inflow
4
inflow quantification
4
quantification three-dimensional
4
cardiovascular imaging
4

Similar Publications

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most prevalent clinical arrhythmia, posing significant mortality and morbidity challenges. Outcomes of current catheter ablation treatment strategies are suboptimal, highlighting the need for innovative approaches. A major obstacle lies in the inability to comprehensively assess both structural and functional remodelling in AF.

View Article and Find Full Text PDF

Can fast wall shear stress computation predict adverse cardiac events in patients with intermediate non-flow limiting stenoses?

Atherosclerosis

December 2024

Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK. Electronic address:

Background And Aims: Coronary angiography-derived wall shear stress (WSS) may enable identification of vulnerable plaques and patients. A new recently introduced software allows seamless three-dimensional quantitative coronary angiography (3D-QCA) reconstruction and WSS computation within a single user-friendly platform carrying promise for clinical applications. This study examines for the first time the efficacy of this software in detecting vulnerable lesions in patients with intermediate non-flow limiting stenoses.

View Article and Find Full Text PDF

Background: Transcatheter closure of percutaneous paravalvular leak (PVL) is a technically challenging procedure, especially after surgical mechanical valve replacements (SMVR), as the risk of interference with the prosthetic valve discs and the complex interventional techniques required for mitral PVL closure. Our study was designed to review the results with transcatheter closure of PVL after SMVR.

Methods: From January 2018 through December 2023, a total of 64 patients with PVL after SMVR underwent transcatheter closure with the help of preoperative 3-dimensional printing model and simulator for image evaluation.

View Article and Find Full Text PDF

Purpose: It was noticed that anterior choroidal artery (AChoA) aneurysms appear to rupture at relatively smaller sizes compared with aneurysms in other intracranial locations, based on anecdotal clinical experience. We therefore aimed to compare ruptured AChoA aneurysms with other ruptured aneurysms in other intracranial locations, pertaining to aneurysm dimensions. This may help in finding out if the rupture risk stratification, based on the amalgamation of aneurysms of multiple locations in one group, precisely estimates aneurysm rupture risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!