The vapour over solid SeBr(4) at 10 degrees C was investigated with a combined gas-phase electron diffraction/mass spectrometric (GED/MS) method. The composition of the vapour derived from the mass spectra (43% SeBr(2), 56.7% Br(2) and 0.3% Se(2)Br(2)) was in agreement with the composition obtained from the analysis of the simultaneously recorded GED intensities (41(3)% SeBr(2), 59(3)% Br(2)). The GED study results in the following geometric parameters (r(g), angle(g) values with total uncertainties): Se-Br = 2.306(5) A and Br-Se-Br = 101.6(6) degrees . Most quantum chemical approximations (B3LYP, MP2, CCSD and CCSD(T) with relativistic effective core potentials and cc-pVTZ as well as aug-cc-pVTZ basis sets for the outer shells) overestimate the Se-Br bond length by 0.01 to 0.03 A. All methods reproduce the bond angle correctly, except for the B3LYP method. Gas phase vibrational frequencies estimated from experimental vibrational amplitudes agree well with those measured by Raman spectroscopy in acetonitrile solutions. All computational methods overestimate vibrational frequencies, especially that for the symmetric stretch vibration, by about or 8 to 13%.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b808071bDOI Listing

Publication Analysis

Top Keywords

combined gas-phase
8
gas-phase electron
8
quantum chemical
8
vibrational frequencies
8
molecular structure
4
structure selenium
4
selenium dibromide
4
dibromide determined
4
determined combined
4
electron diffraction-mass
4

Similar Publications

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

The Search for the Optimal Methodology for Predicting Fluorinated Cathinone Drugs NMR Chemical Shifts.

Molecules

December 2024

Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia in Katowice, 60, Będzińska, 41-200 Sosnowiec, Poland.

Cathinone and its synthetic derivatives belong to organic compounds with narcotic properties. Their structural diversity and massive illegal use create the need to develop new analytical methods for their identification in different matrices. NMR spectroscopy is one of the most versatile methods for identifying the structure of organic substances.

View Article and Find Full Text PDF

What if an experiment could combine the power of cycloaddition and cross-coupling with the formation of an aromatic molecule in a single collision? Crossed molecular beam experiments augmented with electronic structure and statistical calculations provided compelling evidence on a novel radical route involving 1,3-butadiynyl (HCCCC; X∑) radicals synthesizing (substituted) arylacetylenes in the gas phase upon reactions with 1,3-butadiene (CHCHCHCH; XA) and 2-methyl-1,3-butadiene (isoprene; CHC(CH)CHCH; XA'). This elegant mechanism merges two previously disconnected concepts of cross-coupling and cycloaddition-aromatization in a single collision event via the formation of two new C(sp)-C(sp) bonds and bending the 180° moiety of the linear 1,3-butadiynyl radical out of the ordinary by 60° to 120°. In addition to its importance to fundamental organic chemistry, this unconventional mechanism links two previously separated routes of gas-phase molecular mass growth processes of polyacetylenes and polycyclic aromatic hydrocarbons (PAHs), respectively, in low-temperature environments such as in cold molecular clouds like the Taurus Molecular Cloud (TMC-1) and in hydrocarbon-rich atmospheres of planets and their moons such as Titan, which revises the established understanding of low-temperature molecular mass growth processes in the Universe.

View Article and Find Full Text PDF

Progress in understanding the infrared spectrum of the H2O-O2 dimer.

J Chem Phys

January 2025

Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.

Spectra of the weakly bound H2O-O2 dimer are studied in the region of the H2O ν2 band using a tunable quantum cascade laser to probe a pulsed supersonic slit jet expansion. These are the first gas-phase infrared spectra of H2O-O2 and among only a few such results for O2-containing complexes. Almost 100 infrared lines are assigned based on the ground state combination differences from the microwave spectrum of H2O-O2.

View Article and Find Full Text PDF

Constrained Nuclear-Electronic Orbital Transition State Theory Using Energy Surfaces with Nuclear Quantum Effects.

J Chem Theory Comput

January 2025

Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.

Hydrogen-atom transfer is crucial in a myriad of chemical and biological processes, yet the accurate and efficient description of hydrogen-atom transfer reactions and kinetic isotope effects remains challenging due to significant quantum effects on hydrogenic motion, especially tunneling and zero-point energy. In this paper, we combine transition state theory (TST) with the recently developed constrained nuclear-electronic orbital (CNEO) theory to propose a new transition state theory denoted CNEO-TST. We use CNEO-TST with CNEO density functional theory (CNEO-DFT) to predict reaction rate constants for two prototypical gas-phase hydrogen-atom transfer reactions and their deuterated isotopologic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!