Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The effect of Au(3+) percentage in Au/TiO(2) on its storage stability at room temperature was studied by varying the drying temperature and storage duration of a deposition-precipitation prepared Au/TiO(2) sample. Carefully-designed room temperature storage in a desiccator, in the dark to exclude any interference of light irradiation, was referenced to the freezing storage (255 K) in a refrigerator. The samples were characterized by well-calibrated H(2)-TPR, TEM and TG measurements. Reduction of Au(3+) ions and agglomeration of metallic Au particles were shown to be the main reasons for the deterioration of Au/TiO(2) during desiccator-storage. Correlating the percentage of Au(3+) ions, determined by H(2)-TPR, with the storage stability of Au/TiO(2) for CO oxidation at 273 K revealed that Au/TiO(2) samples with higher Au(3+) percentages (>90%) were much more stable during the desiccator-storage than those with higher percentages of metallic Au. Residual water in fresh Au/TiO(2) before storage showed a promotional effect on gold reduction and agglomeration during storage. By maximizing the percentage of Au(3+) ions and minimizing the residual water in the fresh sample, the deterioration of the Au/TiO(2) catalyst was successfully avoided during desiccator-storage of up to 150 days in dark. A possible mechanism of Au/TiO(2) deterioration during the desiccator-storage was also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b807040g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!