Mechanism of thermal decomposition of carbamoyl phosphate and its stabilization by aspartate and ornithine transcarbamoylases.

Proc Natl Acad Sci U S A

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA.

Published: November 2008

Carbamoyl phosphate (CP) has a half-life for thermal decomposition of <2 s at 100 degrees C, yet this critical metabolic intermediate is found even in organisms that grow at 95-100 degrees C. We show here that the binding of CP to the enzymes aspartate and ornithine transcarbamoylase reduces the rate of thermal decomposition of CP by a factor of >5,000. Both of these transcarbamoylases use an ordered-binding mechanism in which CP binds first, allowing the formation of an enzyme.CP complex. To understand how the enzyme.CP complex is able to stabilize CP we investigated the mechanism of the thermal decomposition of CP in aqueous solution in the absence and presence of enzyme. By quantum mechanics/molecular mechanics calculations we show that the critical step in the thermal decomposition of CP in aqueous solution, in the absence of enzyme, involves the breaking of the C O bond facilitated by intramolecular proton transfer from the amine to the phosphate. Furthermore, we demonstrate that the binding of CP to the active sites of these enzymes significantly inhibits this process by restricting the accessible conformations of the bound ligand to those disfavoring the reactive geometry. These results not only provide insight into the reaction pathways for the thermal decomposition of free CP in an aqueous solution but also show why these reaction pathways are not accessible when the metabolite is bound to the active sites of these transcarbamoylases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579353PMC
http://dx.doi.org/10.1073/pnas.0809631105DOI Listing

Publication Analysis

Top Keywords

thermal decomposition
20
aqueous solution
12
mechanism thermal
8
carbamoyl phosphate
8
enzymecp complex
8
decomposition aqueous
8
solution absence
8
active sites
8
reaction pathways
8
decomposition
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!