Determination of polyphenolic compounds in wastewater olive oil by gas chromatography-mass spectrometry.

Talanta

Research Group of Analytical Chemistry and Life Sciences, Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva s/n, E-18071 Granada, Spain.

Published: August 2006

A simple and sensitive method for the determination of 21 polyphenolic compounds in wastewater from olive oil production plants is proposed. The method involves a liquid-liquid microextraction (LLME) procedure with ethyl acetate followed by a silylation step. Identification and quantification have been performed by gas chromatography-mass spectrometry (GC-MS). MS measurements were carried out using selected ion monitoring mode (SIM). alpha-Naftol was used as internal standard. The proposed method was applied to the determination of these compounds in wastewater from an olive oil production factory in Jaén (Spain) at concentration levels ranging from 1.0 to 75.0mugml(-1) for each compound. The autodegradation process by own microbiota in samples collected in three different points of the factory was also studied. The method was validated by a recovery assay with spiked samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2005.12.038DOI Listing

Publication Analysis

Top Keywords

compounds wastewater
12
wastewater olive
12
olive oil
12
determination polyphenolic
8
polyphenolic compounds
8
gas chromatography-mass
8
chromatography-mass spectrometry
8
oil production
8
proposed method
8
oil gas
4

Similar Publications

Wastewater treatment plant (WWTP) is a sustainable technique for making wastewater reusable for non-potable purposes. However, in developing countries, most conventional WWTPs are not equipped to trap all pharmaceutical residues (PRs) and pharmaceutically active chemicals (PhACs). This study aims to perform non-target screening of these contaminants in wastewater and explore health and environmental hazards and the removal efficiency of a WWTP in Malaysia.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Inorganic substrates in frozen solutions: Transformation mechanisms and interactions with organic compounds - A review.

Water Res

December 2024

Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China. Electronic address:

In cold environments, such as polar regions and high latitudes, the freezing of aqueous solutions plays a crucial role in releasing and transforming nutrients, organic compounds, and trace gases. Freezing processes typically affect biogeochemical cycles and environmental processes by reducing the rate of chemical reactions. However, substantial studies have found that some chemical reactions may accelerate unexpectedly under freezing conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of Polar Organic Chemical Integrative Samplers (POCIS) as a more effective method for monitoring pharmaceutical residues in wastewater compared to traditional grab sampling.
  • POCIS allows for continuous sampling over days or weeks, providing more representative data, though challenges remain in obtaining precise quantitative results due to calibration needs.
  • The research successfully identifies and calibrates sampling rates for 49 pharmaceuticals in a wastewater treatment plant near Barcelona, yielding high concentrations of specific compounds, thus establishing a methodology for better environmental monitoring of pharmaceuticals.
View Article and Find Full Text PDF

Excess biological sludge processing and disposal have a significant impact on the energy balance and economics of wastewater treatment operations, and on receiving environments. Anaerobic digestion is probably the most widespread in-plant sludge processing method globally, since it stabilizes and converts biosolids organic matter into biogas, allowing partial recovery of their embedded chemical energy. A considerable number of studies concerning applicable techniques to improve biogas production, both in quantity and quality, include pre-treatment strategies to promote biosolids disintegration aimed at the release and solubilisation of intracellular energy compounds, inorganic/biological amendments aimed at improving process performance, and sludge thermal pre-treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!