An optical fiber assembly developed in our laboratory, which is based on detecting backward light scattering (BLS) signals, is now applied to detect the lead content in environmental samples. Due to effectively eliminating the interference of reflected light, this BLS signals based detection assembly can be used to determine analyte directly. In HAc-NaAc buffer medium (pH 4.8), the interaction of lead and sodium tetraphenylboron (TPB) in the presence of polyethylene glycol (PEG) yields large particles of ternary complex, resulting in strong enhanced backward light scattering (BLS) signals characterized at 371nm. By measuring the BLS signals with the homemade optical fiber assembly coupled with a common spectrofluorometer, we found that the enhanced BLS intensity is proportional to lead content over the range of 0.03-1.0mugml(-1) with the limit of determination (LOD) of 2.6ngml(-1). Three artificial water samples containing various coexistent substances were detected with the recovery of 90.1-107.5%. Standard addition method was used to detect the lead content in drink tap water, and found that the lead is hardly to detect due to too low content. Prior enrichment should be made in order to detect river water samples, and it was found that the content of lead in Jialing River at Bebei Dock is about 14ngml(-1), identical to the results using inductively coupled plasma atomic emission spectrometry (ICP-AES).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2005.12.027 | DOI Listing |
Nat Commun
December 2024
Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging unsolved problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign tasks, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers.
View Article and Find Full Text PDFMed Biol Eng Comput
November 2024
School of Information Science and Technology, Beijing University of Technology, Beijing, 100124, China.
Motor imagery electroencephalography (MI-EEG) is usually used as a driving signal in neuro-rehabilitation systems, and its feature space varies with the recovery progress. It is required to endow the recognition model with continuous learning and self-updating capability. Broad learning system (BLS) can be remodeled in an efficient incremental learning way.
View Article and Find Full Text PDFArXiv
November 2024
Center for Anatomy and Cell Biology, Medical University of Vienna, Austria.
Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions.
View Article and Find Full Text PDFCancers (Basel)
October 2024
Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
IEEE Trans Cybern
October 2024
The broad learning system (BLS) is a versatile and effective tool for analyzing tabular data. However, the rapid expansion of big data has resulted in an overwhelming amount of tabular data, necessitating the development of specialized tools for effective management and analysis. This article introduces an optimized BLS (OBLS) specifically tailored for big data analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!