Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation.

Talanta

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, China.

Published: March 2006

A beta-cyclodextrin (beta-CD)-bonded gel monolithic column polydimethylsiloxane (PDMS) microfluidic device was developed in a simple and feasible way. Before preparation of gel monolithic column in PDMS microchannel, PDMS surface was activated by UV light to create silanol groups, which is an active molecule to covalently bond 3-(trimethoxysilyl)-propyl methacrylate (Bind-Silane) and seal microfluidic device. By the way, Bind-Silane is a bifunctional molecule to link polyacrylamide (PAA) gel and inner wall of PDMS microchannel covalently. Allyl-beta-CD was used not only as a multifunctional crosslinker in PAA gel to control the size of the pores, but also as a chiral selector for the enantioseparation. The stability, transferring heat and optical characteristic of the microfluidic device were examined. The separation capability of the gel monolithic column was confirmed by the successful separation of fluorescein isothiocyanate (FITC)-labeled arginine (Arg), glutamine acid (Glu), tryptophan (Try), cysteine (Cysteine) and phenylalanine (Phe) in the PDMS microfluidic device less than 100 s at 36 mm effective separation length. A maximum of 2.06 x 10(5) theoretical plates was obtained by the potential strength of 490 V/cm. A pair of FITC-labeled dansyl-D,L-threonine (Dns-Thr) was separated absolutely.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2005.09.030DOI Listing

Publication Analysis

Top Keywords

microfluidic device
20
gel monolithic
16
monolithic column
16
column polydimethylsiloxane
8
pdms microfluidic
8
pdms microchannel
8
paa gel
8
microfluidic
5
device
5
gel
5

Similar Publications

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

In recent decades, electrokinetic handling of microparticles and biological cells found many applications ranging from biomedical diagnostics to microscale assembly. The integration of electrokinetic handling such as dielectrophoresis (DEP) greatly benefits microfluidic point-of-care systems as many modern assays require cell handling. Compared to traditional pump-driven microfluidics, typically used for DEP applications, centrifugal CD microfluidics provides the ability to consolidate various liquid handling tasks in self-contained discs under the control of a single motor.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

A Reusable Capillary Flow-Driven Microfluidic System for Abscisic Acid Detection Using a Competitive Immunoassay.

Sensors (Basel)

January 2025

Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.

Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL), the most common type of leukemia, remains incurable with conventional therapy. Despite advances in therapies targeting Bruton's tyrosine kinase and anti-apoptotic protein BCL-2, little is known about their effect on red blood cell (RBC) aggregation in blood flow. In this study, we applied a microfluidic device and a newly developed Software Image Flow Analysis to assess the extent of RBC aggregation in CLL patients and to elucidate the hemorheological effects of the commonly applied therapeutics Obinutuzumab/Venetoclax and Ibrutinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!