Lead is recognized worldwide as a poisonous metal. Thus, the determination of this element is often required in environmental, biological, food and geological samples. However, these analyses are difficult because such samples contain relatively low concentrations of lead, which fall below the detection limit of conventional analytical techniques such as flame atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry. Several preconcentration procedures to determine lead have therefore been devised, involving separation techniques such as liquid-liquid extraction, solid phase extraction, coprecipitation and cloud point extraction. Citing 160 references, this paper offers a critical review of preconcentration procedures for determining lead using spectroanalytical techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2005.10.043 | DOI Listing |
Talanta
December 2024
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
Monitoring paracetamol levels in environmental samples is essential, as this widely used pharmaceutical can degrade water quality and adversely affect both ecosystems and human health. To address this issue, a novel, simple, sensitive, and accurate method has been developed. This method employs a functionalized ionic liquid, 2-(4-hydroxybenzyl)hydrazinium chloride ([HBH][Cl]), specifically designed to structurally mimic paracetamol and function as a complexing agent.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye.
In this study, a preconcentration strategy based on Ni(OH) nanoflowers (NFs) was developed for the extraction/separation of bismuth ions from environmental water samples before the determination by flame atomic absorption spectrometry (FAAS). The homogeneous coprecipitation method was employed for the synthesis of the flower-shaped Ni(OH) and used as an adsorbent for the preconcentration of bismuth. The extraction variables were determined by a univariate optimization strategy to obtain maximum extraction performance.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran. Electronic address:
Here, a zirconium-based metal organic framework-dispersive solid phase extraction method was established as an efficient, robust, and accurate approach for quantifying apixabanin human plasma samples prior to capillary electrophoresis with diode array detection. Various types of metal organic frameworks based on UiO-66-NH were synthesized by altering modulators and solvents and applied as sorbents in the extraction procedure. Among the tested sorbents, UiO-66-NH prepared in dimethylformamide in the presence of acetic acid was found to be the best sorbent in this method for the extraction of apixaban with high extraction efficiency comparable to other types of UiO-66-NH metal organic frameworks.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Grupo MINTOTA, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, C/ Dr. Moliner 50, Burjassot, Valencia E46100, Spain.
In this work, a DNPH doped PDMS based membrane was developed to facilitate carbonyl compound derivatization. This membrane delivers DNPH in presence of carbonyl compounds to form hydrazones. Subsequently, the resulting hydrazones are preconcentrated, separated and detected by in-tube solid phase microextraction (IT-SPME) coupled on-line with capillary liquid chromatography (CapLC) with Uv-Vis diode array detection (DAD).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China. Electronic address:
A rapid and sensitive enrichment technique, field enhanced sample injection-dynamic pH junction-sweeping (FESI-DypH-sweeping) was successfully developed for the simultaneous separation and concentration of alkaloids and stereoisomers of Uncariae ramulus cum uncis (UR) by cyclodextrin electrokinetic chromatography (CDEKC) with diode array detection system. The sample was prepared in a low-conductivity (FESI), low-pH (DypH) sample matrix (4 mM phosphate buffer, 3% methanol, pH=3), and the background electrolyte (BGE) consisted of a high-conductivity, high-pH buffer (40 mM phosphate buffer, pH 7.0, 8 mg/mL carboxymethyl-β-cyclodextrin, and 30% methanol).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!