A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l(-1) for copper and 0.1-5 mg l(-1) for iron, respectively, with a sampling rate of 18 h(-1). The limits of detection are 50 microg l(-1) for copper and 25 microg l(-1) for iron. The relative standard deviations (n=15) are 2% for 0.5 mg l(-1) copper and 1.8% for 0.5 mg l(-1) iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l(-1) of copper and 0.2-5 mg l(-1) of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2005.04.073 | DOI Listing |
J Environ Manage
January 2025
Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Ministry of Education Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
Copper-based materials, renowned for their redox versatility and conductivity, have extensive applications in electrochemical sensing. Herein, we construct stable Cu/Cu interfaces within dual-valence copper nanostructures to achieve enhanced sensitivity in glucose sensing. By employing a hydrolysis method to tune Cu/Cu ratios precisely, we achieved an optimal electrochemical interface with heightened stability and reactivity.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.
As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China. Electronic address:
Copper-based materials are promising for formaldehyde oxidation to produce hydrogen but suffer from degradation caused by soluble copper ions in alkaline electrolytes. In this report, a novel CuPd/CC alloy electrocatalyst is developed to address this issue. The catalyst drives formaldehyde oxidation at 0.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran. Electronic address:
Invincible growth in waste production is the consequence of overpopulation, which should be addressed to reduce the occupied landfill surface needed for their disposal and to alleviate the leachate of extremely hazardous material into the soil and water bodies. In this study, copper (Cu) was extracted from fly ash of a municipal solid waste incinerator by an electro-chemical method, which was optimized to recover the highest amount of Cu, and then it was chelated with 4-aminobenzoic acid (AM) and terephthalic acid (TM) in an aqueous phase. The obtained composites were then heated to form a porous calcinated copper-carbon composite and utilized to adsorb the forever contaminant of PFOS from aqueous solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!