Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research has evaluated the ability of cross-flow filtration (CFF) to perform correct size fractionation of natural aquatic colloids (materials from 1nm to 1mum in size) and particles (>1mum) using scanning electron microscopy (SEM) combined with atomic force microscopy (AFM). SEM provided very clear images at high lateral resolution (ca. 2-5nm), whereas AFM offered extremely low resolution limits (sub-nanometer) and was consequently most useful for studying very small material. Both SEM and AFM were consistent in demonstrating the presence of colloids smaller than 50nm in all fractions including the retentates (i.e. the fractions retained by the CFF membrane), showing that CFF fractionation is not fully quantitative and not based on size alone. This finding suggests that previous studies that investigated trace element partitioning between dissolved, colloidal and particulate fractions using CFF may need to be re-visited as the importance of particles and large colloids may have been over-estimated. The observation that ultra-fine colloidal material strongly interacted with and completely coated a mica substrate to form a thin film has important potential implications for our understanding of the behaviour of trace elements in aquatic systems. The results suggest that clean, 'pure' surfaces are unlikely to exist in the natural environment. As surface binding of trace elements is of great importance, the nature of this sorbed layer may dominate trace element partitioning, rather than the nature of the bulk particle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2005.02.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!