In this work, Amberlite XAD-2 resin functionalized with 4,5-dihydroxy-1,3-benzenedisulfonic acid was synthesized, characterized and applied as a new packing material for an on-line system to nickel preconcentration. The method is based on the sorption of Ni(II) ions in a minicolumn containing the synthesized resin, posterior desorption using an acid solution and measurement of the nickel by spectrophotometry (PAR method). The optimization of the system was performed using factorial design and Doehlert matrix considering five variables: eluent concentration, PAR solution pH, sample flow rate, PAR solution concentration and sample pH. Signals were measured as peak height by using an instrument software. Using the experimental conditions defined in the optimization, the method allowed nickel determination with achieved sampling rate of 25 samples per hour, detection limit (3s) of 2microgl(-1) and precision (assessed as the relative standard deviation) of 8.2-2.6%, for nickel solutions of 10.0-200.0microgl(-1) concentration, respectively. The experimental enrichment factor of the proposed system was 46, for 120s preconcentration time. The proposed procedure was applied for nickel determination in food samples. Recoveries of spike additions (5 or 10microgg(-1)) to food samples were quantitative (94-110%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2004.11.004 | DOI Listing |
Luminescence
January 2025
Department of Electronics and Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India.
This study focuses on enhancing the performance of photodetector through the utilization of inorganic perovskite material. It emphasizes that the unique properties of perovskite materials contribute to the superior performance of the photodetector. The focus is on the design and enhancement of CsSnI-based photodetector having graphene oxide (GO) and PCBM as charge transport layer, analysing their potential for improved operation.
View Article and Find Full Text PDFNat Commun
January 2025
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.
View Article and Find Full Text PDFLayered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
School of Physiotherapy and Rehabilitation, Jamia Hamdard University, India.
Cosmeceutical products such as skin-lightening agents have been used globally to enhance skin tone and obtain a magnificent outward appearance. The pigment known as melanin, produced by melanocytes, imparts skin color. The Cosmetic Europe survey testifies that most people believe that cosmetics enhance one's quality of life.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa.
An increasing amount of water pollution is being caused by an increase in industrial activity. Recently, a wide range of methods, including extraction, chemical coagulation, membrane separation, chemical precipitation, adsorption, and ion exchange, have been used to remove heavy metals from aqueous solutions. The adsorption technique is believed to be the most highly effective method for eliminating heavy metals from wastewater among all of them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!