A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of the interference problems of dioxin-like chemicals with the bio-analytical method CALUX. | LitMetric

Study of the interference problems of dioxin-like chemicals with the bio-analytical method CALUX.

Talanta

Department of Analytical and Environmental Chemistry, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium.

Published: August 2004

The reporter gene expression method CALUX has proven to be a very valuable screening technique for assessing toxic equivalents of dioxins and dioxin-like compounds, because it detects all AhR ligands in a variety of sample matrices. However, the exact meaning of the CALUX response is difficult to evaluate for complex mixtures mainly since not all AhR ligands are known and since antagonistic or synergistic effects occurs. In this paper, non-additive effects on the CALUX response of dioxins were investigated for a limited number of dioxin-like compounds in concentration ranges that are 10(2)-10(8) times higher than that of 2,3,7,8-TCDD. Antagonistic effects are detected for three Aroclors (1242, 1254, 1260), Halowax 1014 (PCN), HCB and PBB 169. The ratios, Aroclor/dioxin, Halowax/dioxin and HCB/dioxin, needed to observe an antagonistic effect are 10000, 5000 and 50000, respectively. No significant deviation from additivity was observed for Aroclor 5442 (PCT) and PBB 77 in the concentration range investigated. Two clean-up procedures have also been tested: in some cases the non-additive effects disappeared or were strongly reduced. Using only an acidic silica column, the classical dioxin-like compounds investigated here (PCB, PCT, PBB, PCN, HCB) as well as the dioxins are collected and analyzed altogether in one fraction. Consequently, no major alteration of the non-additive effects is expected. An acidic silica column combined with an activated carbon column allows the separation of PCDD/F and dioxin-like PCB in two different fractions, PBB 169 is completely eluted in the dioxin fraction and PBB 77 is distributed between the PCB and dioxin fraction. HCB is completely separated from the PCDD/F fraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2004.05.036DOI Listing

Publication Analysis

Top Keywords

dioxin-like compounds
12
non-additive effects
12
method calux
8
ahr ligands
8
calux response
8
pcn hcb
8
pbb 169
8
pct pbb
8
acidic silica
8
silica column
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!