A novel method for determination of magnesium in urine and water samples with mercury film-plated carbon paste electrode.

Talanta

Chemistry Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt.

Published: May 2004

A square wave adsorptive stripping voltammetric (SWAdSV) method for the indirect determination of trace amounts of magnesium with thiopentone sodium (TPS) as an electroactive ligand, at carbon paste mercury film electrode (CP-MFE) is proposed. It is observed that the increase of the square wave voltammetric cathodic peak current of TPS, under alkaline conditions, is linear with the increase of Mg concentration. Under optimum experimental conditions viz.; pH 10.75, 3x10(-5)M TPS and 0.05M phosphate buffer (Na(2)HPO(4)-NaH(2)PO(4)), a linear relation in the range 6x10(-9) to 9x10(-8)M Mg(2+) (0.14-2.16ppb), at 60s deposition time, is obtained. The detection limit of Mg(2+) is 0.14ppb for 60s deposition time with the relative standard deviation is 0.5% (n=5). The proposed method was successfully applied to the determination of magnesium in urine and tap water samples with satisfactory results. The data obtained are compared with the standard flame atomic absorption spectrophotometric method (FAAS).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2003.12.022DOI Listing

Publication Analysis

Top Keywords

determination magnesium
8
magnesium urine
8
water samples
8
carbon paste
8
square wave
8
60s deposition
8
deposition time
8
novel method
4
method determination
4
urine water
4

Similar Publications

As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress.

View Article and Find Full Text PDF

Self-driven electrochemical system for struvite and energy recovery from digested wastewater: Device optimization strategy and long-term operation.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.

A self-driven electrochemical system (SDES) was utilized to treat anaerobic digestate wastewater, aiming to achieve wastewater resource utilization and energy generation. The efficiencies of pollutant removal, resource recovery, and energy production were enhanced by adjusting device parameters (anode area, external resistance, and electrode spacing). The high pollutant removal rates and struvite purity were achieved with the magnesium anode area of 15 cm, external resistance of 10 Ω, and electrode spacing of 10 cm.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Background: Chronic periodontitis is one of the most common inflammatory diseases worldwide. Micronutrients play a significant impact on health and periodontal disease progression. However, there is still a lack of conclusive studies confirming the causal association of micronutrients with chronic periodontitis.

View Article and Find Full Text PDF

Amorphous-dominated magnesium oxide hollow spheres (A-MgO) were prepared using a spray-drying method in this study. These hollow spheres exhibited excellent sphericity, large specific surface areas, and abundant porosity. A-MgO exhibited outstanding fluoride adsorption properties, with a maximum adsorption capacity of 260.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!