Increasing the working calibration range by means of artificial neural networks for the determination of cadmium by graphite furnace atomic absorption spectrometry.

Talanta

Instituto Venezolano-Andino de Investigaciónes Quimica (IVAIQUIM), Facultad de Ciencias, Universidad de los Andes, P.O. Box 542, Mérida 5101, Venezuela.

Published: May 2004

Feed-forward artificial neural networks (ANNs), trained with the generalized delta rule, were evaluated for modeling the non-linear behavior of calibration curves and increasing the working range for the determination of cadmium by graphite furnace atomic absorption spectrometry (GFAAS). Selection of this analyte was made on the basis of its short linear range (up to 4.0mugl(-1)). Two-layer neural networks, comprising one node in the input layer (linear transfer function); a variable number of neurons in the hidden layer (sigmoid transfer functions), and a single neuron (linear transfer function) in the output layer were assessed for such a purpose. The (1:2:1) neural network was selected on the basis of its capacity to adequately model the working calibration curve in the range of study (0-22.0mugl(-1) Cd). The latter resulted in a nearly six fold increase in the working range. Cadmium was determined in the certified reference material "Trace Elements in Drinking Water" (High Purity Standards, Lot No. 490915) at four concentration levels (2.0, 4.0, 8.0 and 12.0mugl(-1) Cd), which were experimentally within and above the linear dynamic range (LDR). No significant differences (P<0.05) were found between the expected concentrations and the results obtained by means of the neural network. The proposed method was compared with the conventional "dilution" approach, and with fitting the working calibration curve by means of a second-order polynomial. Modeling by means of an ANN represents an alternative calibration technique, for its use helps in reducing sample manipulation (due to the extension of the working calibration range), and may provide higher accuracy of the determinations in the non-linear portion of the curve (as a result of the better fitness of the model).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2003.11.013DOI Listing

Publication Analysis

Top Keywords

neural networks
12
increasing working
8
working calibration
8
artificial neural
8
determination cadmium
8
cadmium graphite
8
graphite furnace
8
furnace atomic
8
atomic absorption
8
absorption spectrometry
8

Similar Publications

Understanding metabolic cost through biomechanical data, including ground reaction forces (GRFs) and joint moments, is vital for health, sports, and rehabilitation. The long stabilization time (2-5 min) of indirect calorimetry poses challenges in prolonged tests. This study investigated using artificial neural networks (ANNs) to predict metabolic costs from the GRF and joint moment time series.

View Article and Find Full Text PDF

Classification of Severity of Lung Parenchyma Using Saliency and Discrete Cosine Transform Energy in Computed Tomography of Patients With COVID-19.

Int J Telemed Appl

January 2025

Medical Familiar Unit, Instituto de Seguridad y Servicios Sociales de Los Trabajadores del Estado, Torreón, Coahuila, Mexico.

This study proposes an automated system for assessing lung damage severity in coronavirus disease 2019 (COVID-19) patients using computed tomography (CT) images. These preprocessed CT images identify the extent of pulmonary parenchyma (PP) and ground-glass opacity and pulmonary infiltrates (GGO-PIs). Two types of images-saliency () image and discrete cosine transform (DCT) energy image-were generated from these images.

View Article and Find Full Text PDF

Deep cascaded registration and weakly-supervised segmentation of fetal brain MRI.

Heliyon

January 2025

BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Deformable image registration is a cornerstone of many medical image analysis applications, particularly in the context of fetal brain magnetic resonance imaging (MRI), where precise registration is essential for studying the rapidly evolving fetal brain during pregnancy and potentially identifying neurodevelopmental abnormalities. While deep learning has become the leading approach for medical image registration, traditional convolutional neural networks (CNNs) often fall short in capturing fine image details due to their bias toward low spatial frequencies. To address this challenge, we introduce a deep learning registration framework comprising multiple cascaded convolutional networks.

View Article and Find Full Text PDF

Widespread screening is crucial for the early diagnosis and treatment of glaucoma, the leading cause of visual impairment and blindness. The development of portable technologies, such as smartphone-based ophthalmoscopes, able to image the optical nerve head, represents a resource for large-scale glaucoma screening. Indeed, they consist of an optical device attached to a common smartphone, making the overall device cheap and easy to use.

View Article and Find Full Text PDF

Functional near-infrared spectroscopy (fNIRS) -based hyperscanning is a popular new technology in the field of social neuroscience research. In recent years, studying human social interaction from the perspective of inter-brain networks has received increasing attention. In the present study, we proposed a new approach named the hyper-brain independent component analysis (HB-ICA) for detecting the inter-brain networks from fNIRS-hyperscanning data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!