The response of ion-selective electrodes (ISEs) can be described on the basis of two different theoretical approaches. On one hand, the phase-boundary model is based on the assumption of local equilibria at the aqueous/organic interface. The phase-boundary model allows the description of all practically relevant cases of steady state and even transient responses with sufficient accuracy. Moreover, it has the advantage of relating simple thermodynamic parameters to the response function of the electrodes and hence allowing an intuitive interpretation of many observed facts. On the other hand, the comprehensive but quite involved dynamic model requires knowledge of mobilities and ion transfer rate constants. It has never been applied to ionophore-based electrodes in its full complexity. Both models were first suggested decades ago but have been recently extended to explain so far poorly understood aspects of ionophore-based ISEs. Due to space restrictions, only the most important original references are given in this paper, which summarizes the major assumptions of the phase-boundary potential model and discusses the usefulness and limits of this approach. Recent applications are discussed towards understanding sensor selectivity, upper and lower detection limits (even when concentration polarizations are relevant), the so-called sandwich membrane method to determine thermodynamic parameters, apparently non-Nernstian responses, potential drifts with solid contact electrodes, polyion sensors, and galvanostatically controlled ion sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2003.10.006 | DOI Listing |
Small
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
Enhancing the catalytic performance and durability of M-N─C catalyst is crucial for the efficient operation of proton exchange membrane fuel cells (PEMFCs) and Zn-Air batteries (ZABs). Herein, an approach is developed for the in situ fabrication of a MOFs-derived porous carbon material, co-loaded with Co nanoparticles (NPs) and Co-N sites and integrated onto Fe-doped carbon nanotubes (CNTs), named Co-NC/Fe-NCNTs. Incorporating polymer-wrapped CNTs improves MOFs dispersion annealing at high temperature, which amplifies the three-phase boundary (TPB) by generating much more mesopores and exposing additional active sites within the catalysts layer.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China.
Microstructure and deformation properties of both unaged and aged cladding material were studied at 400 °C for 10,000 h. The results indicated that carbide formation occurred in the cladding material, while thermal aging treatment resulted in spinodal decomposition and G-phase formation in the aged ferrite phase. Furthermore, intensive straight slip bands formed in both unaged and aged austenite phases.
View Article and Find Full Text PDFNanoscale
December 2024
Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Korea.
As a leading Pb-free perovskite material (ABO-type), potassium sodium niobate (K,Na)NbO (KNN)-based ferroelectrics/piezoelectrics have been widely used in electronics, energy conversion, and storage due to their exceptional ability to interconvert mechanical and electrical energies. Beyond traditional applications, the piezoelectric potential generated by mechanical strain or stress modifies their energy band structures and facilitates charge carrier separation and transport, drawing increasing attention in emerging fields such as piezocatalysis and photo-piezocatalysis. With excellent piezoelectric properties, chemical/thermal stability, and strain-tuning capability, KNN-based materials show great promise for high-performance piezocatalytic applications.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Faculty of Mechanical Engineering, Fuel and Combustion Laboratory, University of Belgrade, Kraljice Marije 16, P.O. Box 35, 11120 Belgrade, Serbia.
Nat Commun
November 2024
Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
Cell migration through small constrictions during cancer metastasis requires significant deformation of the nucleus, with associated mechanical stress on the nuclear lamina and chromatin. However, how mechanical deformation impacts various subnuclear structures, including protein and nucleic acid-rich biomolecular condensates, is largely unknown. Here, we find that cell migration through confined spaces gives rise to mechanical deformations of the chromatin network, which cause embedded nuclear condensates, including nucleoli and nuclear speckles, to deform and coalesce.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!