Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase (HRP) to a nano-scaled particulate gold (nano-Au) monolayer modified chitosan-entrapped carbon paste electrode (CCPE). The high affinity of chitosan entrapped in CCPE for nano-Au associated with its amino groups has been utilized to realize the use of nano-Au as an intermediator to retain high bioactivity of the enzyme. Hydrogen peroxide (H(2)O(2)) was determined in the presence of hydroquinone as a mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano-Au displayed excellent electrocatalytical activity to the reduction of H(2)O(2). The effects of experimental variables such as the operating potential of the working electrode, mediator concentration and pH of measuring solution were investigated for optimum analytical performance by using an amperometric method. The enzyme electrode provided a linear response to hydrogen peroxide over a concentration range of 1.22 x 10(-5)-2.43 x 10(-3) mol l(-1) with a sensitivity of 0.013 A l mol(-1) cm(-2) and a detection limit of 6.3 micromol l(-1) based on signal per noise =3. The apparent Michaelis-Menten constant (K(m)(app)) for the sensor was found to be 0.36 mmol l(-1). The lifetime, fabrication reproducibility and measurement repeatability were evaluated with satisfactory results. The analysis results of real sample by this sensor were in satisfactory agreement with those of the potassium permanganate titration method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0039-9140(02)00641-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!