A chelating type ion exchange resin (Amberlite IRC-718), containing iminodiacetate groups as active sites, has been characterized regarding the sorption and subsequent elution of Cd, Zn and Pb, aiming to metal preconcentration from solution samples of different origins. The methodology developed is based on off-line operation employing mini columns made of the sorbent. The eluted metals were determined by flame atomic absorption spectrometry. The effect of column conditioning, influent pH and flow rate during the sorption step, and the nature of the acid medium employed for desorption of the retained metals were investigated. Working (breakthrough) and total capacities were measured under dynamic operating conditions and the results compared with those obtained with Chelex-100, a resin extensively employed for analytical preconcentration. Structural information on the complexation of metals by the chelating groups was obtained by Fourier Transform infrared spectrometry. The analytical response of the Amberlite sorbent was assessed for the analysis of water samples and digestates of marine sediments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0039-9140(02)00034-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!